266 research outputs found
Dielectric properties of Granodiorite partially saturated with water and its correlation to the detection of seismic electric signals
Transient electric signals emitted prior to earthquake occurrence are
recorded at certain sites in the Earth's crust termed sensitive. These field
observations enforce the laboratory investigation of the dielectric response of
rocks forming these localities. The dielectric relaxation of granodiorite rock
coming from such a sensitive locality (Keratea, Greece) reveals, through
complex impedance spectroscopy, that the activation volume for relaxation of
this rock is negative which so far has been reported only rarely. This result,
however, supports a theoretical model on the pre-seismic electric signals and
is likely to be correlated with the sensitivity of the site and hence with the
selectivity
Negative activation volume for dielectric relaxation in hydrated rocks
Negative defect activation volumes are extremely rare in solids. Here, we
report for the first time that this holds in a couple of hydrated rocks for
dielectric relaxation by exploring the complex impedance spectra at various
pressures and temperatures. The present findings mean that the relaxation time
of the relevant relaxation mechanisms decreases upon increasing pressure, thus
it may become too short at higher pressure and hence lead to the emission of
transient electric signals before fracture. This may constitute the
long-standing laboratory confirmation for the explanation of the generation of
electric signals prior to an earthquake, as recently pointed out by Uyeda et al
[Tectonophysics 470 (2009) 205-213]
Three-Dimensional Reconstruction of the Giant Mimivirus Particle with an X-Ray Free-Electron Laser
Citation: Ekeberg, T., Svenda, M., Abergel, C., Maia, F., Seltzer, V., Claverie, J. M., . . . Hajdu, J. (2015). Three-Dimensional Reconstruction of the Giant Mimivirus Particle with an X-Ray Free-Electron Laser. Physical Review Letters, 114(9), 6. doi:10.1103/PhysRevLett.114.098102We present a proof-of-concept three-dimensional reconstruction of the giant mimivirus particle from experimentally measured diffraction patterns from an x-ray free-electron laser. Three-dimensional imaging requires the assembly of many two-dimensional patterns into an internally consistent Fourier volume. Since each particle is randomly oriented when exposed to the x-ray pulse, relative orientations have to be retrieved from the diffraction data alone. We achieve this with a modified version of the expand, maximize and compress algorithm and validate our result using new methods.Additional Authors: Andersson, I.;Loh, N. D.;Martin, A. V.;Chapman, H.;Bostedt, C.;Bozek, J. D.;Ferguson, K. R.;Krzywinski, J.;Epp, S. W.;Rolles, D.;Rudenko, A.;Hartmann, R.;Kimmel, N.;Hajdu, J
MAPfastR: Quantitative Trait Loci Mapping in Outbred Line Crosses
MAPfastR is a software package developed to analyze quantitative trait loci data from inbred and outbred line-crosses. The package includes a number of modules for fast and accurate quantitative trait loci analyses. It has been developed in the R language for fast and comprehensive analyses of large datasets. MAPfastR is freely available at: http://www.computationalgenetics.se/?page_id=7.Swedish Foundation for Strategic Research (Future Research Leader program), European Science Foundation (EURYI Award)
Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source
Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a wellcharacterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 mu m diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 angstrom ngstrom were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.11Ysciescopu
Three-dimensional reconstruction of the giant mimivirus particle with an X-ray free-electron laser
10.1103/PhysRevLett.114.098102Physical Review Letters114909810
Three-Dimensional Reconstruction of the Giant Mimivirus Particle with an X-Ray Free-Electron Laser
Citation: Ekeberg, T., Svenda, M., Abergel, C., Maia, F., Seltzer, V., Claverie, J. M., . . . Hajdu, J. (2015). Three-Dimensional Reconstruction of the Giant Mimivirus Particle with an X-Ray Free-Electron Laser. Physical Review Letters, 114(9), 6. doi:10.1103/PhysRevLett.114.098102We present a proof-of-concept three-dimensional reconstruction of the giant mimivirus particle from experimentally measured diffraction patterns from an x-ray free-electron laser. Three-dimensional imaging requires the assembly of many two-dimensional patterns into an internally consistent Fourier volume. Since each particle is randomly oriented when exposed to the x-ray pulse, relative orientations have to be retrieved from the diffraction data alone. We achieve this with a modified version of the expand, maximize and compress algorithm and validate our result using new methods.Additional Authors: Andersson, I.;Loh, N. D.;Martin, A. V.;Chapman, H.;Bostedt, C.;Bozek, J. D.;Ferguson, K. R.;Krzywinski, J.;Epp, S. W.;Rolles, D.;Rudenko, A.;Hartmann, R.;Kimmel, N.;Hajdu, J
- …
