12 research outputs found

    Longitudinal performance of senescence accelerated mouse prone-strain 8 (SAMP8) mice in an olfactory-visual water maze challenge

    Get PDF
    © 2018 Lam, Takechi, Albrecht, D’Alonzo, Graneri, Hackett, Coulson, Fimognari, Nesbit and Mamo. Morris water maze (MWM) is widely used to assess cognitive deficits in pre-clinical rodent models. Latency time to reach escape platform is frequently reported, but may be confounded by deficits in visual acuity, or differences in locomotor activity. This study compared performance of Senescence Accelerated Mouse Prone-Strain 8 (SAMP8) and control Senescence Accelerated Mouse Resistant-Strain 1 (SAMR1) mice in classical MWM, relative to performance in a newly developed olfactory-visual maze testing protocol. Performance indicated as the escape time to rescue platform for classical MWM testing showed that SAMP8 mice as young as 6 weeks of age did poorly relative to age-matched SAMR1 mice. The olfactory-visual maze challenge described better discriminated SAMP8 vs. SAMR1 mice than classical MWM testing, based on latency time measures. Consideration of the distance traveled rather than latency time in the classical MWM found no treatment effects between SAMP8 and SAMR1 at 40 weeks of age and the olfactory-visual measures of performance confirmed the classical MWM findings. Longitudinal (repeat) assessment of SAMP8 and SAMR1 performance at 6, 20, 30, and 40 weeks of age in the olfactory-visual testing protocol showed no age-associated deficits in SAMP8 mice to the last age end-point indicated. Collectively, the results from this study suggest the olfactory-visual testing protocol may be advantageous compared to classical MWM as it avoids potential confounders of visual impairment in some strains of mice and indeed, may offer insight into cognitive and behavioral deficits that develop with advanced age in the widely used SAMP8 murine model

    Short-term efficacy and safety of rituximab therapy in refractory systemic lupus erythematosus: results from the British Isles Lupus Assessment Group Biologics Register.

    Get PDF
    OBJECTIVES: To describe the baseline characteristics of SLE patients requiring biologic therapy in the UK and to explore short term efficacy and infection rates associated with rituximab (RTX) use. METHODS: Patients commencing biologic therapy for refractory SLE and who consented to join BILAG-BR were analysed. Baseline characteristics, disease activity (BILAG 2004/SLEDAI-2K) and rates of infection over follow-up were analysed. Response was defined as loss of all A and B BILAG scores to â©˝ 1 B score with no new A/B scores in other organ systems at 6 months. RESULTS: Two hundred and seventy SLE patients commenced biologic therapy from September 2010 to September 2015, most commonly RTX (n = 261). Two hundred and fifty (93%) patients were taking glucocorticoids at baseline at a median [interquartile range (IQR)] oral dose of 10 mg (5-20 mg) daily. Response rates at 6 months were available for 68% of patients. The median (IQR) BILAG score was 15 (10-23) at baseline and 3 (2-12) at 6 months (P < 0.0001). The median (IQR) SLEDAI-2K reduced from 8 (5-12) to 4 (0-7) (P < 0.001). Response was achieved in 49% of patients. There was also a reduction in glucocorticoid use to a median (IQR) dose of 7.5 mg (5-12 mg) at 6 months (P < 0.001). Serious infections occurred in 26 (10%) patients, being more frequent in the first 3 months post-RTX therapy. A higher proportion of early infections were non-respiratory (odds ratio = 1.98, 95% CI: 0.99, 3.9; P = 0.049). CONCLUSION: RTX is safe and is associated with improvement in disease activity in refractory SLE patients with concomitant reductions in glucocorticoid use. Early vigilance for infection post-infusion is important to further improve treatment risks and benefits

    Chemotherapeutic Activity of Pitavastatin in Vincristine Resistant B-Cell Acute Lymphoblastic Leukemia

    No full text
    B-cell acute lymphoblastic leukemia (ALL) is derived from an accumulation of malignant, immature B cells in the bone marrow and blood. Relapse due, in part, to the emergence of tumor cells that are resistant to front line standard chemotherapy is associated with poor patient outcomes. This challenge highlights the need for new treatment strategies to eliminate residual chemoresistant tumor cells. Based on the use of pitavastatin in acute myeloid leukemia (AML), we evaluated its efficacy in an REH ALL cell line derived to be resistant to vincristine. We found that pitavastatin inhibited the proliferation of both parental and vincristine-resistant REH tumor cells at an IC50 of 449 nM and 217 nM, respectively. Mitochondrial bioenergetic assays demonstrated that neither vincristine resistance nor pitavastatin treatment affected cellular oxidative phosphorylation, beta-oxidation, or glycolytic metabolism in ALL cells. In a co-culture model of ALL cells with bone marrow stromal cells, pitavastatin significantly decreased cell viability more robustly in the vincristine-resistant ALL cells compared with their parental controls. Subsequently, NSG mice were used to develop an in vivo model of B-cell ALL using both parental and vincristine-resistant ALL cells. Pitavastatin (10 mg/kg i.p.) significantly reduced the number of human CD45+ REH ALL cells in the bone marrow of mice after 4 weeks of treatment. Mechanistic studies showed that pitavastatin treatment in the vincristine-resistant cells led to apoptosis, with increased levels of cleaved PARP and protein-signaling changes for AMP-activated protein kinase/FoxO3a/Puma. Our data suggest the possible repurposing of pitavastatin as a chemotherapeutic agent in a model of vincristine-resistant B-cell ALL

    Chemotherapeutic Activity of Pitavastatin in Vincristine Resistant B-Cell Acute Lymphoblastic Leukemia

    No full text
    B-cell acute lymphoblastic leukemia (ALL) is derived from an accumulation of malignant, immature B cells in the bone marrow and blood. Relapse due, in part, to the emergence of tumor cells that are resistant to front line standard chemotherapy is associated with poor patient outcomes. This challenge highlights the need for new treatment strategies to eliminate residual chemoresistant tumor cells. Based on the use of pitavastatin in acute myeloid leukemia (AML), we evaluated its efficacy in an REH ALL cell line derived to be resistant to vincristine. We found that pitavastatin inhibited the proliferation of both parental and vincristine-resistant REH tumor cells at an IC50 of 449 nM and 217 nM, respectively. Mitochondrial bioenergetic assays demonstrated that neither vincristine resistance nor pitavastatin treatment affected cellular oxidative phosphorylation, beta-oxidation, or glycolytic metabolism in ALL cells. In a co-culture model of ALL cells with bone marrow stromal cells, pitavastatin significantly decreased cell viability more robustly in the vincristine-resistant ALL cells compared with their parental controls. Subsequently, NSG mice were used to develop an in vivo model of B-cell ALL using both parental and vincristine-resistant ALL cells. Pitavastatin (10 mg/kg i.p.) significantly reduced the number of human CD45+ REH ALL cells in the bone marrow of mice after 4 weeks of treatment. Mechanistic studies showed that pitavastatin treatment in the vincristine-resistant cells led to apoptosis, with increased levels of cleaved PARP and protein-signaling changes for AMP-activated protein kinase/FoxO3a/Puma. Our data suggest the possible repurposing of pitavastatin as a chemotherapeutic agent in a model of vincristine-resistant B-cell ALL

    Blood-brain barrier dysfunction precedes cognitive decline and neurodegeneration in diabetic insulin resistant mouse model: An implication for causal link

    Get PDF
    © 2017 Takechi, Lam, Brook, Giles, Fimognari, Mooranian, Al-Salami, Coulson, Nesbit and Mamo. Diabetic insulin resistance and pro-diabetic diet are reported to increase dementia risk through unknown mechanisms. Emerging evidence suggests that the integrity of blood-brain barrier (BBB) is central to the onset and progression of neurodegeneration and cognitive impairment. Therefore, the current study investigated the effect of pro-diabetic diets on cognitive dysfunction in association to BBB integrity and its putative mechanisms. In C57BL/6J mice chronically ingested with a diet enriched in fat and fructose (HFF), Morris Water Maze (MWM) test indicated no significant cognitive decline after 4 weeks of HFF feeding compared to low-fat (LF) fed control. However, at this stage, BBB dysfunction accompanied by heightened neuroinflammation in cortex and hippocampal regions was already evident. After 24 weeks, HFF fed mice showed significantly deteriorated cognitive function concomitant with substantial neurodegeneration, which both showed significant associations with increased BBB permeability. In addition, the data indicated that the loss of BBB tight junctions was significantly associated with heightened inflammation and leukocyte infiltration. The data collectively suggest that in mice maintained on pro-diabetic diet, the dysfunctional BBB associated to inflammation and leukocyte recruitment precedes the neurodegeneration and cognitive decline, possibly indicating causal association
    corecore