13 research outputs found

    A Spatial Beam Splitter Consisting of a Near-Zero Refractive Index Medium

    Full text link

    Effects of Dehydration on Brain Perfusion and Infarct Core After Acute Middle Cerebral Artery Occlusion in Rats: Evidence From High-Field Magnetic Resonance Imaging

    Get PDF
    Background: Dehydration is common among ischemic stroke patients and is associated with early neurological deterioration and poor outcome. This study aimed to test the hypothesis that dehydration status is associated with decreased cerebral perfusion and aggravation of ischemic brain injury.Methods: Diffusion-weighted imaging and arterial spin labeling perfusion MR imaging were performed on rats with middle cerebral artery occlusion (MCAO) by using a 9.4T MR imaging scanner to measure the volume of infarction and relative cerebral blood flow (rCBF) after infarction. Twenty-five rats were assigned to either a dehydration group or normal hydration group, and dehydration status was achieved by water deprivation for 48 h prior to MCAO.Results: The volume of the infarction was significantly larger for the dehydration group at the 4th h after MCAO (p = 0.040). The progression in the infarct volume between the 1st and 4th h was also larger in the dehydration group (p = 0.021). The average rCBF values of the contralateral normal hemispheres at the 1st and the 4th h were significantly lower in the dehydration group (p = 0.027 and 0.040, respectively).Conclusions: Our findings suggested that dehydration status is associated with the progression of infarct volume and decreases in cerebral blood flow during the acute stage of ischemic stroke. This preliminary study provided an imaging clue that more intensive hydration therapies and reperfusion strategies are necessary for the management of acute ischemic stroke patients with dehydration status

    Heat transfer and structure stress analysis of micro packaging component of high power light emitting diode

    No full text
    This paper focuses on the heat transfer and structural stress analysis of the micro- scale packaging structure of a high-power light emitting diode. The thermal-effect and thermal-stress of light emitting diode are determined numerically. Light emitting diode is attached to the silicon substrate through the wire bonding process by using epoxy as die bond material. The silicon substrate is etched with holes at the bottom and filled with high conductivity copper material. The chip temperature and structure stress increase with input power consumption. The micro light emitting diode is mounted on the heat sink to increase the heat dissipation performance, to decrease chip temperature, to enhance the material structure reliability and safety, and to avoid structure failure as well. This paper has successfully used the finite element method to the micro-scale light emitting diode heat transfer and stress concentration at the edges through etched holes

    Shallow gas hydrates off southwest Taiwan and their mechanisms

    No full text
    International audienceWe have collected two shallow gas hydrate samples at two sites having different geological settings off southwest Taiwan during the cruise MD214 in 2018. The first core site, MD18-3542, is on the South Yuan-An East Ridge at ~ 1200 m water deep, where a structural unconformity covered by fine-silt sediments appears at ~ 5.5 m below the seafloor. The second core site, MD18-3543, is close to the Good-Weather Ridge at ~ 1100 m water deep, where a gas-related pockmark structure and authigenic carbonates are present at shallow strata with fine-silt sediments near the seafloor. Sediment properties of core MD18-3542 are distinctively different above and below the layer corresponding to the unconformity. Both cores show obvious gaps or voids in the lower core halves. The core features could be linked to the dissociated methane upward migrating from deep strata. Core site settings with upwelling methane would favor the formation of shallow gas hydrates. At site MD18-3542, the shallow hydrate could be formed due to high concentration methane kept beneath the unconformity covered by fine-silt sediments. At site MD18-3543, the shallow hydrate could be formed due to an extremely high flux of upwelling methane trapped either beneath the authigenic carbonates or fine-silt sediments

    A termite symbiotic mushroom maximizing sexual activity at growing tips of vegetative hyphae

    Get PDF
    Abstract Background Termitomyces mushrooms are mutualistically associated with fungus-growing termites, which are widely considered to cultivate a monogenotypic Termitomyces symbiont within a colony. Termitomyces cultures isolated directly from termite colonies are heterokaryotic, likely through mating between compatible homokaryons. Results After pairing homokaryons carrying different haplotypes at marker gene loci MIP and RCB from a Termitomyces fruiting body associated with Odontotermes formosanus, we observed nuclear fusion and division, which greatly resembled meiosis, during each hyphal cell division and conidial formation in the resulting heterokaryons. Surprisingly, nuclei in homokaryons also behaved similarly. To confirm if meiotic-like recombination occurred within mycelia, we constructed whole-genome sequencing libraries from mycelia of two homokaryons and a heterokaryon resulting from mating of the two homokaryons. Obtained reads were aligned to the reference genome of Termitomyces sp. J132 for haplotype reconstruction. After removal of the recombinant haplotypes shared between the heterokaryon and either homokaryons, we inferred that 5.04% of the haplotypes from the heterokaryon were the recombinants resulting from homologous recombination distributed genome-wide. With RNA transcripts of four meiosis-specific genes, including SPO11, DMC1, MSH4, and MLH1, detected from a mycelial sample by real-time quantitative PCR, the nuclear behavior in mycelia was reconfirmed meiotic-like. Conclusion Unlike other basidiomycetes where sex is largely restricted to basidia, Termitomyces maximizes sexuality at somatic stage, resulting in an ever-changing genotype composed of a myriad of coexisting heterogeneous nuclei in a heterokaryon. Somatic meiotic-like recombination may endow Termitomyces with agility to cope with termite consumption by maximized genetic variability
    corecore