2,656 research outputs found

    Sketch-based Influence Maximization and Computation: Scaling up with Guarantees

    Full text link
    Propagation of contagion through networks is a fundamental process. It is used to model the spread of information, influence, or a viral infection. Diffusion patterns can be specified by a probabilistic model, such as Independent Cascade (IC), or captured by a set of representative traces. Basic computational problems in the study of diffusion are influence queries (determining the potency of a specified seed set of nodes) and Influence Maximization (identifying the most influential seed set of a given size). Answering each influence query involves many edge traversals, and does not scale when there are many queries on very large graphs. The gold standard for Influence Maximization is the greedy algorithm, which iteratively adds to the seed set a node maximizing the marginal gain in influence. Greedy has a guaranteed approximation ratio of at least (1-1/e) and actually produces a sequence of nodes, with each prefix having approximation guarantee with respect to the same-size optimum. Since Greedy does not scale well beyond a few million edges, for larger inputs one must currently use either heuristics or alternative algorithms designed for a pre-specified small seed set size. We develop a novel sketch-based design for influence computation. Our greedy Sketch-based Influence Maximization (SKIM) algorithm scales to graphs with billions of edges, with one to two orders of magnitude speedup over the best greedy methods. It still has a guaranteed approximation ratio, and in practice its quality nearly matches that of exact greedy. We also present influence oracles, which use linear-time preprocessing to generate a small sketch for each node, allowing the influence of any seed set to be quickly answered from the sketches of its nodes.Comment: 10 pages, 5 figures. Appeared at the 23rd Conference on Information and Knowledge Management (CIKM 2014) in Shanghai, Chin

    Using Branch-and-Price to Find High Quality Solutions Quickly

    Get PDF
    We develop an exact solution approach for integer programs that produces high- quality solutions quickly by solving well-chosen restrictions of the problem. Column generation is used both for generating these problem restrictions and for producing bounds on the value of an optimal solution to the problem. Obtaining primal solutions by solving problem restrictions also provides an easy way to search for improved solutions in the neighborhood of the current best solution. The overall approach is parallelized and computational experiments demonstrate its efficacy. An application to inventory routing is presented

    Lift-and-project inequalities

    Full text link
    The lift-and-project technique is a systematic way to generate valid inequalities for a mixed binary program. The technique is interesting both on the theoretical and on the practical point of view. On the theoretical side it allows one to construct the inequality description of the convex hull of all mixed-{0,1} solutions of a binary MIP in n repeated applications of the technique, where n is the number of binary variables. On the practical side, a variant of the method allows one to derive some cutting planes from the simplex tableau rather efficiently

    Multiagent Maximum Coverage Problems: The Trade-off Between Anarchy and Stability

    Full text link
    The price of anarchy and price of stability are three well-studied performance metrics that seek to characterize the inefficiency of equilibria in distributed systems. The distinction between these two performance metrics centers on the equilibria that they focus on: the price of anarchy characterizes the quality of the worst-performing equilibria, while the price of stability characterizes the quality of the best-performing equilibria. While much of the literature focuses on these metrics from an analysis perspective, in this work we consider these performance metrics from a design perspective. Specifically, we focus on the setting where a system operator is tasked with designing local utility functions to optimize these performance metrics in a class of games termed covering games. Our main result characterizes a fundamental trade-off between the price of anarchy and price of stability in the form of a fully explicit Pareto frontier. Within this setup, optimizing the price of anarchy comes directly at the expense of the price of stability (and vice versa). Our second results demonstrates how a system-operator could incorporate an additional piece of system-level information into the design of the agents' utility functions to breach these limitations and improve the system's performance. This valuable piece of system-level information pertains to the performance of worst performing agent in the system.Comment: 14 pages, 4 figure

    Approximation Algorithms for Connected Maximum Cut and Related Problems

    Full text link
    An instance of the Connected Maximum Cut problem consists of an undirected graph G = (V, E) and the goal is to find a subset of vertices S \subseteq V that maximizes the number of edges in the cut \delta(S) such that the induced graph G[S] is connected. We present the first non-trivial \Omega(1/log n) approximation algorithm for the connected maximum cut problem in general graphs using novel techniques. We then extend our algorithm to an edge weighted case and obtain a poly-logarithmic approximation algorithm. Interestingly, in stark contrast to the classical max-cut problem, we show that the connected maximum cut problem remains NP-hard even on unweighted, planar graphs. On the positive side, we obtain a polynomial time approximation scheme for the connected maximum cut problem on planar graphs and more generally on graphs with bounded genus.Comment: 17 pages, Conference version to appear in ESA 201

    Mixed state discrimination using optimal control

    Get PDF
    We present theory and experiment for the task of discriminating two nonorthogonal states, given multiple copies. We implement several local measurement schemes, on both pure states and states mixed by depolarizing noise. We find that schemes which are optimal (or have optimal scaling) without noise perform worse with noise than simply repeating the optimal single-copy measurement. Applying optimal control theory, we derive the globally optimal local measurement strategy, which outperforms all other local schemes, and experimentally implement it for various levels of noise.Comment: Corrected ref 1 date; 4 pages & 4 figures + 2 pages & 3 figures supplementary materia

    Stochastic make-to-stock inventory deployment problem: an endosymbiotic psychoclonal algorithm based approach

    Get PDF
    Integrated steel manufacturers (ISMs) have no specific product, they just produce finished product from the ore. This enhances the uncertainty prevailing in the ISM regarding the nature of the finished product and significant demand by customers. At present low cost mini-mills are giving firm competition to ISMs in terms of cost, and this has compelled the ISM industry to target customers who want exotic products and faster reliable deliveries. To meet this objective, ISMs are exploring the option of satisfying part of their demand by converting strategically placed products, this helps in increasing the variability of product produced by the ISM in a short lead time. In this paper the authors have proposed a new hybrid evolutionary algorithm named endosymbiotic-psychoclonal (ESPC) to decide what and how much to stock as a semi-product in inventory. In the proposed theory, the ability of previously proposed psychoclonal algorithms to exploit the search space has been increased by making antibodies and antigen more co-operative interacting species. The efficacy of the proposed algorithm has been tested on randomly generated datasets and the results compared with other evolutionary algorithms such as genetic algorithms (GA) and simulated annealing (SA). The comparison of ESPC with GA and SA proves the superiority of the proposed algorithm both in terms of quality of the solution obtained and convergence time required to reach the optimal/near optimal value of the solution

    Optimizing fire station locations for the Istanbul metropolitan municipality

    Get PDF
    Copyright @ 2013 INFORMSThe Istanbul Metropolitan Municipality (IMM) seeks to determine locations for additional fire stations to build in Istanbul; its objective is to make residences and historic sites reachable by emergency vehicles within five minutes of a fire station’s receipt of a service request. In this paper, we discuss our development of a mathematical model to aid IMM in determining these locations by using data retrieved from its fire incident records. We use a geographic information system to implement the model on Istanbul’s road network, and solve two location models—set-covering and maximal-covering—as what-if scenarios. We discuss 10 scenarios, including the situation that existed when we initiated the project and the scenario that IMM implemented. The scenario implemented increases the city’s fire station coverage from 58.6 percent to 85.9 percent, based on a five-minute response time, with an implementation plan that spans three years

    On k-Column Sparse Packing Programs

    Full text link
    We consider the class of packing integer programs (PIPs) that are column sparse, i.e. there is a specified upper bound k on the number of constraints that each variable appears in. We give an (ek+o(k))-approximation algorithm for k-column sparse PIPs, improving on recent results of k22kk^2\cdot 2^k and O(k2)O(k^2). We also show that the integrality gap of our linear programming relaxation is at least 2k-1; it is known that k-column sparse PIPs are Ω(k/logk)\Omega(k/ \log k)-hard to approximate. We also extend our result (at the loss of a small constant factor) to the more general case of maximizing a submodular objective over k-column sparse packing constraints.Comment: 19 pages, v3: additional detail
    corecore