We present theory and experiment for the task of discriminating two
nonorthogonal states, given multiple copies. We implement several local
measurement schemes, on both pure states and states mixed by depolarizing
noise. We find that schemes which are optimal (or have optimal scaling) without
noise perform worse with noise than simply repeating the optimal single-copy
measurement. Applying optimal control theory, we derive the globally optimal
local measurement strategy, which outperforms all other local schemes, and
experimentally implement it for various levels of noise.Comment: Corrected ref 1 date; 4 pages & 4 figures + 2 pages & 3 figures
supplementary materia