85 research outputs found
Tuning the electronic structure of graphene by ion irradiation
Mechanically exfoliated graphene layers deposited on SiO2 substrate were
irradiated with Ar+ ions in order to experimentally study the effect of atomic
scale defects and disorder on the low-energy electronic structure of graphene.
The irradiated samples were investigated by scanning tunneling microscopy and
spectroscopy measurements, which reveal that defect sites, besides acting as
scattering centers for electrons through local modification of the on-site
potential, also induce disorder in the hopping amplitudes. The most important
consequence of the induced disorder is the substantial reduction in the Fermi
velocity, revealed by bias-dependent imaging of electron-density oscillations
observed near defect sites
Apparent rippling with honeycomb symmetry and tunable periodicity observed by scanning tunneling microscopy on suspended graphene
Suspended graphene is difficult to image by scanning probe microscopy due to
the inherent van-der-Waals and dielectric forces exerted by the tip which are
not counteracted by a substrate. Here, we report scanning tunneling microscopy
data of suspended monolayer graphene in constant-current mode revealing a
surprising honeycomb structure with amplitude of 50200 pm and lattice
constant of 10-40 nm. The apparent lattice constant is reduced by increasing
the tunneling current , but does not depend systematically on tunneling
voltage or scan speed . The honeycomb lattice of the rippling
is aligned with the atomic structure observed on supported areas, while no
atomic corrugation is found on suspended areas down to the resolution of about
pm. We rule out that the honeycomb structure is induced by the feedback
loop using a changing , that it is a simple enlargement effect of
the atomic resolution as well as models predicting frozen phonons or standing
phonon waves induced by the tunneling current. Albeit we currently do not have
a convincing explanation for the observed effect, we expect that our intriguing
results will inspire further research related to suspended graphene.Comment: 10 pages, 7 figures, modified, more detailed discussion on errors in
vdW parameter
Graphene nanoribbons with zigzag and armchair edges prepared by scanning tunneling microscope lithography on gold substrates
The properties of graphene nanoribbons are dependent on both the nanoribbon width and the crystallographic orientation of the edges. Scanning tunneling microscope lithography is a method which is able to create graphene nanoribbons with well defined edge orientation, having a width of a few nanometers. However, it has only been demonstrated on the top layer of graphite. In order to allow practical applications of this powerful lithography technique, it needs to be implemented on single layer graphene. We demonstrate the preparation of graphene nanoribbons with well defined crystallographic orientation on top of gold substrates. Our transfer and lithography approach brings one step closer the preparation of well defined graphene nanoribbons on arbitrary substrates for nanoelectronic applications
Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy
Atomic Force Microscopy (AFM) in the tapping (intermittent contact) mode is a
commonly used tool to measure the thickness of graphene and few layer graphene
(FLG) flakes on silicon oxide surfaces. It is a convenient tool to quickly
determine the thickness of individual FLG films. However, reports from
literature show a large variation of the measured thickness of graphene layers.
This paper is focused on the imaging mechanism of tapping mode AFM (TAFM) when
measuring graphene and FLG thickness and we show that at certain measurement
parameters significant deviations can be introduced in the measured thickness
of FLG flakes. An increase of as much as 1 nm can be observed in the measured
height of FLG crystallites, when using an improperly chosen range of free
amplitude values of the tapping cantilever. We present comparative Raman
spectroscopy and TAFM measurements on selected single and multilayer graphene
films, based on which we suggest ways to correctly measure graphene and FLG
thickness using TAFM
Effects of temperature and ammonia flow rate on the chemical vapour deposition growth of nitrogen-doped graphene
We doped graphene in situ during synthesis from methane and ammonia on copper in a low-pressure
chemical vapour deposition system, and investigated the effect of the synthesis temperature and
ammonia concentration on the growth. Raman and X-ray photoelectron spectroscopy was used to
investigate the quality and nitrogen content of the graphene and demonstrated that decreasing the
synthesis temperature and increasing the ammonia flow rate results in an increase in the concentration
of nitrogen dopants up to ca. 2.1% overall. However, concurrent scanning electron microscopy studies
demonstrate that decreasing both the growth temperature from 1000 to 900 1C and increasing the N/C
precursor ratio from 1/50 to 1/10 significantly decreased the growth rate by a factor of six overall. Using
scanning tunnelling microscopy we show that the nitrogen was incorporated mainly in substitutional
configuration, while current imaging tunnelling spectroscopy showed that the effect of the nitrogen on
the density of states was visible only over a few atom distances
Effect of the disorder in graphene grain boundaries: A wave packet dynamics study
Chemical vapor deposition (CVD) on Cu foil is one of the most promising methods to produce graphene samples despite of introducing numerous grain boundaries into the perfect graphene lattice. A rich variety of GB structures can be realized experimentally by controlling the parameters in the CVD method. Grain boundaries contain non-hexagonal carbon rings (4, 5, 7, 8 membered rings) and vacancies in various ratios and arrangements. Using wave packet dynamic (WPD) simulations and tight-binding electronic structure calculations, we have studied the effect of the structure of GBs on the transport properties. Three model GBs with increasing disorder were created in the computer: a periodic 5-7 GB, a "serpentine" GB, and a disordered GB containing 4, 8 membered rings and vacancies. It was found that for small energies (E = EF ± 1 eV) the transmission decreases with increasing disorder. Four membered rings and vacancies are identified as the principal scattering centers. Revealing the connection between the properties of GBs and the CVD growth method may open new opportunities in the graphene based nanoelectronics. © 2013 Elsevier B.V. All rights reserved
- …