We doped graphene in situ during synthesis from methane and ammonia on copper in a low-pressure
chemical vapour deposition system, and investigated the effect of the synthesis temperature and
ammonia concentration on the growth. Raman and X-ray photoelectron spectroscopy was used to
investigate the quality and nitrogen content of the graphene and demonstrated that decreasing the
synthesis temperature and increasing the ammonia flow rate results in an increase in the concentration
of nitrogen dopants up to ca. 2.1% overall. However, concurrent scanning electron microscopy studies
demonstrate that decreasing both the growth temperature from 1000 to 900 1C and increasing the N/C
precursor ratio from 1/50 to 1/10 significantly decreased the growth rate by a factor of six overall. Using
scanning tunnelling microscopy we show that the nitrogen was incorporated mainly in substitutional
configuration, while current imaging tunnelling spectroscopy showed that the effect of the nitrogen on
the density of states was visible only over a few atom distances