251 research outputs found

    Differential toxicological effects of natural and synthetic sources and enantiomeric forms of limonene on mosquito larvae

    Get PDF
    Common fragranced consumer products, such as cleaning supplies and personal care products, emit chiral compounds such as limonene that have been associated with adverse effects on human health. However, those same compounds abound in nature, and at similar concentrations as in products, but without the same apparent adverse human health effects. We investigated whether different types of limonene may elicit different biological effects. In this study, we investigated the mortality rate of mosquito larvae in response to changes in their environment. Specifically, we tested different sources of naturally occurring R-limonene and chemically synthetized limonene, containing one of its enantiomeric forms (R-, S-) in mortality bioassays with Aedes aegypti mosquito larvae. We found that a natural source of limonene extracted from oranges induced lower mortality of mosquito larvae compared to synthetic sources at the same concentration. However, enantiomeric forms did not differ in their effects on mortality. Our results provide novel evidence that natural sources of a chemical can cause lower rates of mortality than synthetic sources

    Advanced data mining in field ion microscopy

    Get PDF
    Field ion microscopy (FIM) allows to image individual surface atoms by exploiting the effect of an intense electric field. Widespread use of atomic resolution imaging by FIM has been hampered by a lack of efficient image processing/data extraction tools. Recent advances in imaging and data mining techniques have renewed the interest in using FIM in conjunction with automated detection of atoms and lattice defects for materials characterization. After a brief overview of existing routines, we review the use of machine learning (ML) approaches for data extraction with the aim to catalyze new data-driven insights into high electrical field physics. Apart from exploring various supervised and unsupervised ML algorithms in this context, we also employ advanced image processing routines for data extraction from large sets of FIM images. The outcomes and limitations of such routines are discussed, and we conclude with the possible application of energy minimization schemes to the extracted point clouds as a way of improving the spatial resolution of FIM

    Continuous thickening of activated sludge by electro-flotation

    Get PDF
    The present study was conducted for thickening of activated sludge by continuous electro-flotation (EF) process. The effects of some key factors such as initial pH, current density, operating time, electrode type (stainless steel and graphite) and operation conditions on the sludge thickening by determine of sludge volume reduction (SVR) and sludge solid concentration (SSC) and as well as removal of chemical oxygen demand (COD), total solids (TS), total suspended solids (TSS) and color were investigated. The results showed that the process has a good efficiency. The highest amount of SVR efficiency (89.3) and SSC (38 g L-1) were achieved at current density of 8 mA cm(-2) in 15 min for stainless steel. Moreover, as surface/volume ratio increased, better thickening happened because increases both mass transfer and electro-generation of O-2 and H-2 at the surface of electrodes in low applied current density. Accordingly, consumed electrical energy was 0.15-1 kW h m(-3). Although suitable cell design is entirely essential, the use of chemicals and temperature increase are not effective. Consequently, EF is a comparatively appropriate process for thickening; in the water separated from the process, the amounts pertaining to COD, TS, TSS and color were respectively 112, 1601, 140 mg L-1 and 5 TCU which are useable for subsequent different consumptions. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved

    Deformation-Induced Martensite: A New Paradigm for Exceptional Steels

    Get PDF
    Atom-probe tomography (APT) and synchrotron X-ray diffraction (XRD) were combined to study the carbon supersaturation of ferrite for two pearlitic steel-wire compositions, eutectoid and hypereutectoid. The samples were cold-drawn at different strains up to true drawing strains for the eutectoid steel and the hypereutectoid steel, respectively. The wire diameters range from 1.7 mm down to 0.058 mm for the eutectoid steel and from 0.54 mm down to 0.02 mm for the hypereutectoid steel. The findings reveal that cold-drawing of pearlitic steel wires leads to a carbon-supersaturated ferrite causing a spontaneous tetragonal distortion of the ferrite unit cell through a strain-induced deformation driven martensitic transformation. We fi nd that the drawing process induced a significant increase in the carbon content inside the originally nearcarbon-free ferrite until a steady state is approached at drawing strains larger than ca. 4 for the wires. The change of carbon concentration in the ferrite grains during the drawing process is closely related to the tetragonal distortion of the ferrite unit cell

    Effect of natural and calcined halloysite clay minerals as low-cost additives on the performance of 3D-printed alkali-activated materials

    Get PDF
    Crown Copyright © 2022. This study investigates the effects of natural and calcined halloysite clay minerals (“NH” and “CH”, respectively) on the performance of 3D printed alkali-activated materials (AAMs). Halloysite clay minerals are selected as they are low-cost and abundantly available. At first, different characterisation techniques were employed to characterise the NH and CH additives. Mechanical performance, extrusion window, and shape stability of several AAM formulations containing various dosages (0.5 wt% to 5 wt%) of the NH and CH additives were evaluated. The best-performing mixtures in terms of fresh and hardened properties namely, NH-1.5 and CH-1.5 mixtures (containing 1.5 wt% of NH and CH additives, respectively) were then selected for 3D printing. The results showed that the CH-1.5 mixture exhibited enhanced shape stability, buildability, and mechanical properties as compared to the control mixture. The flexural and compressive strengths of 3D printed CH-1.5 samples were 88% and 40%, respectively higher than those of the printed control samples. Using the CH-1.5 mixture, a twisted column with an intricate shape was printed to verify the suitability of the developed CH-modified AAM for the construction of complex structures. This study establishes the use of halloysite clay minerals as low-cost additives for enhancing the mechanical properties and printing performance of AAMs.European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement ID: 101029471; National Science Centre, Poland, within Project No. 2020/39/D/ST8/00975 (SONATA-16)

    Effects of Acute Insulin-Induced Hypoglycemia on Indices of Inflammation Putative mechanism for aggravating vascular disease in diabetes

    Get PDF
    OBJECTIVE: To examine the effects of acute insulin-induced hypoglycemia on inflammation, endothelial dysfunction, and platelet activation in adults with and without type 1 diabetes. RESEARCH DESIGN AND METHODS: We studied 16 nondiabetic adults and 16 subjects with type 1 diabetes during euglycemia (blood glucose 4.5 mmol/l) and hypoglycemia (blood glucose 2.5 mmol/l). Markers of inflammation, thrombosis, and endothelial dysfunction (soluble P-selectin, interleukin-6, von Willebrand factor [vWF], tissue plasminogen activator [tPA], high-sensitivity C-reactive protein [hsCRP], and soluble CD40 ligand [sCD40L]) were measured; platelet-monocyte aggregation and CD40 expression on monocytes were determined using flow cytometry. RESULTS: In nondiabetic participants, platelet activation occurred after hypoglycemia, with increments in platelet-monocyte aggregation and P-selectin (P ≤ 0.02). Inflammation was triggered with CD40 expression increasing maximally at 24 h (3.13 ± 2.3% vs. 2.06 ± 1.0%) after hypoglycemia (P = 0.009). Both sCD40L and hsCRP (P = 0.02) increased with a nonsignificant rise in vWF and tPA, indicating a possible endothelial effect. A reduction in sCD40L, tPA, and P-selectin occurred during euglycemia (P = 0.03, P ≤ 0.006, and P = 0.006, respectively). In type 1 diabetes, both CD40 expression (5.54 ± 4.4% vs. 3.65 ± 1.8%; P = 0.006) and plasma sCD40L concentrations increased during hypoglycemia (peak 3.41 ± 3.2 vs. 2.85 ± 2.8 ng/ml; P = 0.03). Platelet-monocyte aggregation also increased significantly at 24 h after hypoglycemia (P = 0.03). A decline in vWF and P-selectin occurred during euglycemia (P ≤ 0.04). CONCLUSIONS: Acute hypoglycemia may provoke upregulation and release of vasoactive substances in adults with and without type 1 diabetes. This may be a putative mechanism for hypoglycemia-induced vascular injury

    Main assumptions for energy pathways

    Full text link
    © The Author(s) 2019. The aim of this chapter is to make the scenario calculations fully transparent and comprehensible to the scientific community. It provides the scenario narratives for the reference case (5.0 °C) as well as for the 2.0 °C and 1.5 °C on a global and regional basis. Cost projections for all fossil fuels and renewable energy technologies until 2050 are provided. Explanations are given for all relevant base year data for the modelling and the main input parameters such as GDP, population, renewable energy potentials and technology parameters

    An overview of digital speech watermarking

    Get PDF
    Digital speech watermarking is a robust way to hide and thus secure data like audio and video from any intentional or unintentional manipulation through transmission. In terms of some signal characteristics including bandwidth, voice/non-voice and production model, digital speech signal is different from audio, music and other signals. Although, various review articles on image, audio and video watermarking are available, there are still few review papers on digital speech watermarking. Therefore this article presents an overview of digital speech watermarking including issues of robustness, capacity and imperceptibility. Other issues discussed are types of digital speech watermarking, application, models and masking methods. This article further highlights the related challenges in the real world, research opportunities and future works in this area, yet to be explored fully

    The Human Phenotype Ontology in 2024: phenotypes around the world

    Get PDF
    \ua9 The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs

    The Human Phenotype Ontology in 2024: phenotypes around the world.

    Get PDF
    The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs
    corecore