1,009 research outputs found

    Visible Sector Supersymmetry Breaking Revisited

    Full text link
    We revisit the possibility of "visible sector" SUSY models: models which are straightforward renormalizable extensions of the Minimal Supersymmetric Standard Model (MSSM), where SUSY is broken at tree level. Models of this type were abandoned twenty years ago due to phenomenological problems, which we review. We then demonstrate that it is possible to construct simple phenomenologically viable visible sector SUSY models. Such models are indeed very constrained, and have some inelegant features. They also have interesting and distinctive phenomenology. Our models predict light gauginos and very heavy squarks and sleptons. The squarks and sleptons may not be observable at the LHC. The LSP is a stable very light gravitino with a significant Higgsino admixture. The NLSP is mostly Bino. The Higgs boson is naturally heavy. Proton decay is sufficently and naturally suppressed, even for a cutoff scale as low as 10^8 GeV. The lightest particle of the O'Raifeartaigh sector (the LOP) is stable, and is an interesting cold dark matter candidate.Comment: 23 pages, 3 figures, LaTe

    Ab-initio density functional studies of stepped TaC surfaces

    Full text link
    We report on density functional total energy calculations of the step formation and interaction energies for vicinal TaC(001) surfaces. Our calculations show that double and triple-height steps are favored over single-height steps for a given vicinal orientation, which is in agreement with recent experimental observations. We provide a description of steps in terms of atomic displacements and charge localization and predict an experimentally observable rumpled structure of the step-edges, where the Ta atoms undergo larger displacements compared to the C atoms.Comment: 4 pages, 4 figure

    Mixing-induced CP violating sources for electroweak baryogenesis from a semiclassical approach

    Full text link
    The effects of flavor mixing in electroweak baryogenesis is investigated in a generalized semiclassical WKB approach. Through calculating the nonadiabatic corrections to the particle currents it is shown that extra CP violation sources arise from the off-diagonal part of the equation of motion of particles moving inside the bubble wall. This type of mixing-induced source is of the first order in derivative expansion of the Higgs condensate, but is oscillation suppressed. The numerical importance of the mixing-induced source is discussed in the Minimal Supersymmetric Standard Model and compared with the source term induced by semiclassical force. It is found that in a large parameter space where oscillation suppression is not strong enough, the mixing-induced source can dominate over that from the semiclassical force.Comment: 19 pp, 2 figs, 1 table, some comments added, to appear in Eur.Phys.J.

    Non-thermal dark matter via Affleck-Dine baryogenesis and its detection possibility

    Full text link
    The formation and late time decays of Q-balls are generic consequences of the Affleck-Dine (AD) baryogenesis. A substantial amount of the lightest supersymmetry (SUSY) particles (LSPs) are produced non-thermally as the decay products of these Q-balls. This requires a significantly large annihilation cross section of the LSP so as not to overclose the universe, which predicts a higgsino- or wino-like LSP instead of the standard bino LSP. We have reexamined the AD baryogenesis with special attention to the late-time decays of the Q-balls, and then specified the parameter regions where the LSPs produced by the Q-ball decays result in a cosmologically interesting mass density of dark matter by adopting several SUSY breaking models. This reveals new cosmologically interesting parameter regions, which have not attracted much attention so far. We have also investigated the prospects of direct and indirect detection of these dark matter candidates, and found that there is an intriguing possibility to detect them in various next generation dark matter searches.Comment: 51 pages, 18 figures, version accepted for publication in Physical Review

    Symmetries and Elasticity of Nematic Gels

    Full text link
    A nematic liquid-crystal gel is a macroscopically homogeneous elastic medium with the rotational symmetry of a nematic liquid crystal. In this paper, we develop a general approach to the study of these gels that incorporates all underlying symmetries. After reviewing traditional elasticity and clarifying the role of broken rotational symmetries in both the reference space of points in the undistorted medium and the target space into which these points are mapped, we explore the unusual properties of nematic gels from a number of perspectives. We show how symmetries of nematic gels formed via spontaneous symmetry breaking from an isotropic gel enforce soft elastic response characterized by the vanishing of a shear modulus and the vanishing of stress up to a critical value of strain along certain directions. We also study the phase transition from isotropic to nematic gels. In addition to being fully consistent with approaches to nematic gels based on rubber elasticity, our description has the important advantages of being independent of a microscopic model, of emphasizing and clarifying the role of broken symmetries in determining elastic response, and of permitting easy incorporation of spatial variations, thermal fluctuations, and gel heterogeneity, thereby allowing a full statistical-mechanical treatment of these novel materials.Comment: 21 pages, 4 eps figure

    Semiclassical force for electroweak baryogenesis: three-dimensional derivation

    Get PDF
    We derive a semiclassical transport equation for fermions propagating in the presence of a CP-violating planar bubble wall at a first order electroweak phase transition. Starting from the Kadanoff-Baym (KB) equation for the two-point (Wightman) function we perform an expansion in gradients, or equivalently in the Planck constant h-bar. We show that to first order in h-bar the KB equations have a spectral solution, which allows for an on-shell description of the plasma excitations. The CP-violating force acting on these excitations is found to be enhanced by a boost factor in comparison with the 1+1-dimensional case studied in a former paper. We find that an identical semiclassical force can be obtained by the WKB method. Applications to the MSSM are also mentioned.Comment: 19 page

    Magnetic Field Amplification in Galaxy Clusters and its Simulation

    Get PDF
    We review the present theoretical and numerical understanding of magnetic field amplification in cosmic large-scale structure, on length scales of galaxy clusters and beyond. Structure formation drives compression and turbulence, which amplify tiny magnetic seed fields to the microGauss values that are observed in the intracluster medium. This process is intimately connected to the properties of turbulence and the microphysics of the intra-cluster medium. Additional roles are played by merger induced shocks that sweep through the intra-cluster medium and motions induced by sloshing cool cores. The accurate simulation of magnetic field amplification in clusters still poses a serious challenge for simulations of cosmological structure formation. We review the current literature on cosmological simulations that include magnetic fields and outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure

    Non-Equilibrium Statistical Physics of Currents in Queuing Networks

    Get PDF
    We consider a stable open queuing network as a steady non-equilibrium system of interacting particles. The network is completely specified by its underlying graphical structure, type of interaction at each node, and the Markovian transition rates between nodes. For such systems, we ask the question ``What is the most likely way for large currents to accumulate over time in a network ?'', where time is large compared to the system correlation time scale. We identify two interesting regimes. In the first regime, in which the accumulation of currents over time exceeds the expected value by a small to moderate amount (moderate large deviation), we find that the large-deviation distribution of currents is universal (independent of the interaction details), and there is no long-time and averaged over time accumulation of particles (condensation) at any nodes. In the second regime, in which the accumulation of currents over time exceeds the expected value by a large amount (severe large deviation), we find that the large-deviation current distribution is sensitive to interaction details, and there is a long-time accumulation of particles (condensation) at some nodes. The transition between the two regimes can be described as a dynamical second order phase transition. We illustrate these ideas using the simple, yet non-trivial, example of a single node with feedback.Comment: 26 pages, 5 figure

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging

    Get PDF
    We present a measurement of the top quark pair (ttˉt\bar{t}) production cross section (σttˉ\sigma_{t\bar{t}}) in ppˉp\bar{p} collisions at s=1.96\sqrt{s}=1.96 TeV using 230 pb1^{-1} of data collected by the D0 experiment at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), missing transverse energy, and jets in the final state. We employ lifetime-based b-jet identification techniques to further enhance the ttˉt\bar{t} purity of the selected sample. For a top quark mass of 175 GeV, we measure σttˉ=8.61.5+1.6(stat.+syst.)±0.6(lumi.)\sigma_{t\bar{t}}=8.6^{+1.6}_{-1.5}(stat.+syst.)\pm 0.6(lumi.) pb, in agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let
    corecore