3,385 research outputs found

    The natural history observations and collections made during Furneaux's visit to Tasmania (Van Diemen's Land) in 1773 with special reference to botany

    Get PDF
    During the visit of H.M.S. ADVENTURE to Tasmania in March 1773 a number of animals and birds were caught or observed; several of the birds were later drawn. As well, Tobias Furneaux, captain of ADVENTURE, collected seeds of at least two plants, Eucalyptus obliqua and Leptospermum lanigerum, and herbarium specimens of the latter, which were brought back to England. The seeds were germinated and plants were growing in London gardens in the late 1770's. The possible existence of other herbarium specimens is discussed, and the reasons for the small amount of scientific collection by ADVENTURE's complement are discussed

    The locations of collection and collectors of specimens described by Labillardierc in 'Novae Hollandiae Plantarum Specimen' - additional notes

    Get PDF
    Several plants described by Labillardire and indicated to have been collected in Tasmania are shown to be species endemic to Western Australia. The locations are corrected and collectors are indicated if the original specimens could not have been collected by Labillardiere. The reasons for these errors are discussed and it is concluded that caution is required in accepting Labillardiere's type locations

    Controlled interfacial assembly of 2D curved colloidal crystals and jammed shells

    Full text link
    Assembly of colloidal particles on fluid interfaces is a promising technique for synthesizing two-dimensional micro-crystalline materials useful in fields as diverse as biomedicine1, materials science2, mineral flotation3 and food processing4. Current approaches rely on bulk emulsification methods, require further chemical and thermal treatments, and are restrictive with respect to the materials employed5-9. The development of methods that exploit the great potential of interfacial assembly for producing tailored materials have been hampered by the lack of understanding of the assembly process. Here we report a microfluidic method that allows direct visualization and understanding of the dynamics of colloidal crystal growth on curved interfaces. The crystals are periodically ejected to form stable jammed shells, which we refer to as colloidal armour. We propose that the energetic barriers to interfacial crystal growth and organization can be overcome by targeted delivery of colloidal particles through hydrodynamic flows. Our method allows an unprecedented degree of control over armour composition, size and stability.Comment: 18 pages, 5 figure

    Scientific Opinion on the safety and efficacy of disodium 5?-ribonucleotides, disodium 5?-guanylate, disodium 5?-inosinate for all animal species and categories

    Get PDF
    The flavours included in this assessment are widely present in nature as the building blocks of DNA and RNA. In the absence of any information on the microbial strains or substrates used for the production of the additives, and with little information on the manufacturing process, the FEEDAP Panel is unable to ascertain whether the manufacturing process introduces any safety concerns. Disodium 5′-guanylate and disodium 5′-inosinate and their mixture are considered to be safe for the target animals and the consumer. However, considering the lack of information on the production process, these conclusions apply only to the compounds ‘per se’ and their extrapolation to any feed additive containing these compounds is not possible. In the absence of any data related to hazard to the user, it would be prudent to regard disodium 5′-guanylate and disodium 5′-inosinate and their mixture as potentially hazardous to workers by skin or inhalation exposure. The compounds under assessment are naturally present in feed materials; therefore, no risk to the safety for the environment is foreseen. Since these compounds are used in food as flavourings, and their function in feed is essentially the same as that in food, no further demonstration of efficacy is necessary

    Environmental risk assessment of genetically modified plants - concepts and controversies

    Get PDF
    Background and purpose: In Europe, the EU Directive 2001/18/EC lays out the main provisions of environmental risk assessment (ERA) of genetically modified (GM) organisms that are interpreted very differently by different stakeholders. The purpose of this paper is to: (a) describe the current implementation of ERA of GM plants in the EU and its scientific shortcomings, (b) present an improved ERA concept through the integration of a previously developed selection procedure for identification of non-target testing organisms into the ERA framework as laid out in the EU Directive 2001/18/EC and its supplement material (Commission Decision 2002/623/EC), (c) describe the activities to be carried out in each component of the ERA and (d) propose a hierarchical testing scheme. Lastly, we illustrate the outcomes for three different crop case examples. Main features: Implementation of the current ERA concept of GM crops in the EU is based on an interpretation of the EU regulations that focuses almost exclusively on the isolated bacteria-produced novel proteins with little consideration of the whole plant. Therefore, testing procedures for the effect assessment of GM plants on non-target organisms largely follow the ecotoxicological testing strategy developed for pesticides. This presumes that any potential adverse effect of the whole GM plant and the plant-produced novel compound can be extrapolated from testing of the isolated bacteriaproduced novel compound or can be detected in agronomic field trials. This has led to persisting scientific criticism. Results: Based on the EU ERA framework, we present an improved ERA concept that is system oriented with the GM plant at the centre and integrates a procedure for selection of testing organisms that do occur in the receiving environment. We also propose a hierarchical testing scheme from laboratory studies to field trials and we illustrate the outcomes for three different crop case examples. Conclusions and recommendations: Our proposed concept can alleviate a number of deficits identified in the current approach to ERA of GM plants. It allows the ERA to be tailored to the GM plant case and the receiving environment

    Decaying Dark Matter can explain the electron/positron excesses

    Get PDF
    PAMELA and ATIC recently reported excesses in e+ e- cosmic rays. Since the interpretation in terms of DM annihilations was found to be not easily compatible with constraints from photon observations, we consider the DM decay hypothesis and find that it can explain the e+ e- excesses compatibly with all constraints, and can be tested by dedicated HESS observations of the Galactic Ridge. ATIC data indicate a DM mass of about 2 TeV: this mass naturally implies the observed DM abundance relative to ordinary matter if DM is a quasi-stable composite particle with a baryon-like matter asymmetry. Technicolor naturally yields these type of candidates.Comment: 20 pages, 7 figure

    Is an ecosystem services-based approach developed for setting specific protection goals for plant protection products applicable to other chemicals?

    Get PDF
    Clearly defined protection goals specifying what to protect, where and when, are required for designing scientifically sound risk assessments and effective risk management of chemicals. Environmental protection goals specified in EU legislation are defined in general terms, resulting in uncertainty in how to achieve them. In 2010, the European Food Safety Authority (EFSA) published a framework to identify more specific protection goals based on ecosystem services potentially affected by plant protection products. But how applicable is this framework to chemicals with different emission scenarios and receptor ecosystems? Four case studies used to address this question were: (i) oil refinery waste water exposure in estuarine environments; (ii) oil dispersant exposure in aquatic environments; (iii) down the drain chemicals exposure in a wide range of ecosystems (terrestrial and aquatic); (iv) persistent organic pollutant exposure in remote (pristine) Arctic environments. A four-step process was followed to identify ecosystems and services potentially impacted by chemical emissions and to define specific protection goals. Case studies demonstrated that, in principle, the ecosystem services concept and the EFSA framework can be applied to derive specific protection goals for a broad range of chemical exposure scenarios. By identifying key habitats and ecosystem services of concern, the approach offers the potential for greater spatial and temporal resolution, together with increased environmental relevance, in chemical risk assessments. With modifications including improved clarity on terminology/definitions and further development/refinement of the key concepts, we believe the principles of the EFSA framework could provide a methodical approach to the identification and prioritization of ecosystems, ecosystem services and the service providing units that are most at risk from chemical exposure
    corecore