1,177 research outputs found
A northern range extension of a Canadian species of Special Concern, Dielis pilipes (Hymenoptera: Scoliidae), in the Okanagan Valley of British Columbia
The only known Canadian records of the yellow scarab hunter wasp, Dielis pilipes (Saussure) (Hymenoptera: Scoliidae), are from the southern Okanagan and Similkameen valleys of British Columbia. We report a 25-km northern range extension of the species into the Ponderosa Pine Biogeoclimatic Ecosystem Classification zone, collected in an unmanaged agricultural field in Summerland, British Columbia. This finding is of conservation importance and has implications for natural biological control of ten-lined June beetles, Polyphylla decemlineata (Say) and P. crinita LeConte (Coleoptera: Scarabaeidae), incidental agricultural pests in the Okanagan
The metallogenic evolution of the Greater Antilles
The Greater Antilles host some of the world's most important deposits of bauxite and lateritic nickel as well as significant resources of gold and silver, copper, zinc, manganese, cobalt and chromium. Beginning in Jurassic time, sedimentary exhalative base metal deposits accumulated in marine sedimentary rift basins as North and South America drifted apart. With the onset of intraoceanic subduction during the Early Cretaceous, a primitive (tholeiitic) island arc formed above a southwesterly-dipping subduction zone. Podiform chromite deposits formed in the mantle portion of the supra-subduction zone, directly above subducted Proto-Caribbean oceanic lithosphere. Within the nascent island arc, bimodal-mafic volcanogenic massive sulfide deposits formed in a fore-arc setting; mafic volcanogenic massive sulfide deposits formed later in mature back-arc basins. The Pueblo Viejo gold district, with five million ounces in production and twenty million ounces in mineable reserves, formed at 108-112Ma, in an apical rift or back-arc setting. By Late Cretaceous time, calc-alkaline volcanism was well established along the entire length of the Greater Antilles. Volcanogenic massive sulfide deposits including shallow submarine deposits characteristic of the primitive island arc gave way to porphyry copper and epithermal precious metal deposits typical of the mature island arc. Oblique collision of the Greater Antilles with North America began in the Late Cretaceous in Cuba and migrated eastward. Orogenic gold and tungsten deposits that formed during the collision event are preserved in ophiolites and in metamorphic core complexes. Since the Eocene, regional tectonism has been dominated by strike-slip motion as the North American continent moved westward relative to the Caribbean Plate. Large nickel-cobalt laterite deposits were formed when serpentinites were exposed to weathering and erosion during the mid-Tertiary. Bauxite deposits were derived from the weathering of volcanic ash within a carbonate platform of Eocene to Miocene age
The metallogenic evolution of the Greater Antilles
The Greater Antilles host some of the worldâs most important deposits of bauxite and lateritic nickel as well as significant resources of gold and silver, copper, zinc, manganese, cobalt and chromium. Beginning in Jurassic time, sedimentary exhalative base metal deposits accumulated in marine sedimentary rift basins as North and South America drifted apart. With the onset of intraoceanic subduction during the Early Cretaceous, a primitive (tholeiitic) island arc formed above a southwesterly-dipping subduction zone. Podiform chromite deposits formed in the mantle portion of the supra-subduction zone, directly above subducted Proto-Caribbean oceanic lithosphere. Within the nascent island arc, bimodal-mafic volcanogenic massive sulfide deposits formed in a fore-arc setting; mafic volcanogenic massive sulfide deposits formed later in mature back-arc basins. The Pueblo Viejo gold district, with five million ounces in production and twenty million ounces in mineable reserves, formed at 108-112Ma, in an apical rift or back-arc setting. By Late Cretaceous time, calc-alkaline volcanism was well established along the entire length of the Greater Antilles. Volcanogenic massive sulfide deposits including shallow submarine deposits characteristic of the primitive island arc gave way to porphyry copper and epithermal precious metal deposits typical of the mature island arc. Oblique collision of the Greater Antilles with North America began in the Late Cretaceous in Cuba and migrated eastward. Orogenic gold and tungsten deposits that formed during the collision event are preserved in ophiolites and in metamorphic core complexes. Since the Eocene, regional tectonism has been dominated by strike-slip motion as the North American continent moved westward relative to the Caribbean Plate. Large nickel-cobalt laterite deposits were formed when serpentinites were exposed to weathering and erosion during the mid-Tertiary. Bauxite deposits were derived from the weathering of volcanic ash within a carbonate platform of Eocene to Miocene ag
Conservation and âland grabbingâ in rangelands: Part of the problem or part of the solution?
Large-scale land acquisitions have increased in scale and pace due to changes in commodity markets, agricultural investment strategies, land prices, and a range of other policy and market forces. The areas most affected are the global âcommonsâ â lands that local people traditionally use collectively â including much of the worldâs forests, wetlands, and rangelands. In some cases land acquisition occurs with environmental objectives in sight â including the setting aside of land as protected areas for biodiversity conservation. On the other hand, current trends and patterns of commercial land acquisition present a major and growing threat not just to local livelihoods and human rights, but also to conservation objectives. There is a potential opportunity here for greater collaboration between conservation interests, and local communitiesâ land rights interests with their supporters amongst human rights and social justice movements. This Issue Paper documents experiences from the rangelands of Mongolia, Kenya, India, Ethiopia, and other countries, which were presented at a Conference on Conservation and Land Grabbing held in London in 2013
Lattice swelling and modulus change in a helium-implanted tungsten alloy: X-ray micro-diffraction, surface acoustic wave measurements, and multiscale modelling
Using X-ray micro-diffraction and surface acoustic wave spectroscopy, we measure lattice swelling and elastic modulus changes in a W-1% Re alloy after implantation with 3110 appm of helium. An observed lattice expansion of a fraction of a per cent gives rise to an order of magnitude larger reduction in the surface acoustic wave velocity. A multiscale model, combining elasticity and density functional theory, is applied to the interpretation of observations. The measured lattice swelling is consistent with the relaxation volume of self-interstitial and helium-filled vacancy defects that dominate the helium-implanted material microstructure. Larger scale atomistic simulations using an empirical potential confirm the findings of the elasticity and density functional theory model for swelling. The reduction of surface acoustic wave velocity predicted by density functional theory calculations agrees remarkably well with experimental observations.National Science Foundation (U.S.) (CHE-1111557
Defective Vortex Lattices in Layered Superconductors with Point Pins at the Extreme Type-II Limit
The mixed phase of layered superconductors with no magnetic screening is
studied through a partial duality analysis of the corresponding frustrated XY
model in the presence of weak random point pins. Isolated layers exhibit a
defective vortex lattice at low temperature that is phase coherent.
Sufficiently weak Josephson coupling between adjacent layers results in an
entangled vortex solid that exhibits weak superconductivity across layers. The
corresponding vortex liquid state shows an inverted specific heat anomaly that
we propose accounts for that seen in YBCO. A three-dimensional vortex lattice
with dislocations occurs at stronger coupling. This crossover sheds light on
the apparent discrepancy concerning the observation of a vortex-glass phase in
recent Monte Carlo simulations of the same XY model.Comment: 4 pages, 1 figure. To appear in PRB, rapid communicatio
Formation of Small-Scale Condensations in the Molecular Clouds via Thermal Instability
A systematic study of the linear thermal instability of a self-gravitating
magnetic molecular cloud is carried out for the case when the unperturbed
background is subject to local expansion or contraction. We consider the
ambipolar diffusion, or ion-neutral friction on the perturbed states. In this
way, we obtain a non-dimensional characteristic equation that reduces to the
prior characteristic equation in the non-gravitating stationary background. By
parametric manipulation of this characteristic equation, we conclude that there
are, not only oblate condensation forming solutions, but also prolate solutions
according to local expansion or contraction of the background. We obtain the
conditions for existence of the Field lengths that thermal instability in the
molecular clouds can occur. If these conditions establish, small-scale
condensations in the form of spherical, oblate, or prolate may be produced via
thermal instability.Comment: 16 page, accepted by Ap&S
A-dependence of nuclear transparency in quasielastic A(e,e'p) at high Q^2
The A-dependence of the quasielastic A(e,e'p) reaction has been studied at
SLAC with H-2, C, Fe, and Au nuclei at momentum transfers Q^2 = 1, 3, 5, and
6.8 (GeV/c)^2. We extract the nuclear transparency T(A,Q^2), a measure of the
average probability that the struck proton escapes from the nucleus A without
interaction. Several calculations predict a significant increase in T with
momentum transfer, a phenomenon known as Color Transparency. No significant
rise within errors is seen for any of the nuclei studied.Comment: 5 pages incl. 2 figures, Caltech preprint OAP-73
Local genomic adaptation of coral reef-associated microbiomes to gradients of natural variability and anthropogenic stressors
Holobionts are species-specific associations between macro- and microorganisms. On coral reefs, the benthic coverage of coral and algal holobionts varies due to natural and anthropogenic forcings. Different benthic macroorganisms are predicted to have specific microbiomes. In contrast, local environmental factors are predicted to select for specific metabolic pathways in microbes. To reconcile these two predictions, we hypothesized that adaptation of microbiomes to local conditions is facilitated by the horizontal transfer of genes responsible for specific metabolic capabilities. To test this hypothesis, microbial metagenomes were sequenced from 22 coral reefs at 11 Line Islands in the central Pacific that together span a wide range of biogeochemical and anthropogenic influences. Consistent with our hypothesis, the percent cover of major benthic functional groups significantly correlated with particular microbial taxa. Reefs with higher coral cover had a coral microbiome with higher abundances of Alphaproteobacteria (such as Rhodobacterales and Sphingomonadales), whereas microbiomes of algae-dominated reefs had higher abundances of Gammaproteobacteria (such as Alteromonadales, Pseudomonadales, and Vibrionales), Betaproteobacteria, and Bacteriodetes. In contrast to taxa, geography was the strongest predictor of microbial community metabolism. Microbial communities on reefs with higher nutrient availability (e.g., equatorial upwelling zones) were enriched in genes involved in nutrient-related metabolisms (e.g., nitrate and nitrite ammonification, Ton/Tol transport, etc.). On reefs further from the equator, microbes had more genes encoding chlorophyll biosynthesis and photosystems I/II. These results support the hypothesis that core microbiomes are determined by holobiont macroorganisms, and that those core taxa adapt to local conditions by selecting for advantageous metabolic genes
- âŠ