92 research outputs found

    Zéro de conduite: déficience intellectuelle et comportement excessif : comment agir ?

    Get PDF
    Ce travail porte sur l’exploration des stratégies d’accompagnement des personnes ayant une déficience intellectuelle et présentant un comportement excessif. Il met en lumière le cheminement permettant au MSP d’appliquer « l’approche positive de la personne » selon Denise Fraser et Lucien Labbé. Non seulement cette recherche donne des éléments pour analyser des situations problématiques, mais elle apporte des stratégies d’intervention. L’accent est mis sur l’attitude que le professionnel peut adopter afin de faire évoluer un processus de réciprocité et d’interdépendance avec la personne. La posture professionnelle empruntée par l’intervenant lui permettra de se positionner et de rediriger la personne vers des alternatives positives pour gérer sa vie

    Transformation of a Microprolactinoma into a Mixed Growth Hormone and Prolactin-Secreting Pituitary Adenoma

    Get PDF
    Combined prolactin (PRL) and growth hormone (GH) secretion by a single pituitary tumor can occur in approximately 5% of cases. However, in all previously reported patients, combined secretion of both hormones was present at the time of diagnosis. Here we describe a patient initially diagnosed with a pure prolactin-secreting microadenoma, who experienced the progressive apparition of symptomatic autonomous GH secretion while on intermittent long term dopamine agonist therapy. She was operated on, and immunohistochemical analysis of tumor tissue confirmed the diagnosis of pituitary adenoma with uniform co-staining of all cells for both GH and PRL. This patient represents the first documented occurrence of asynchronous development of combined GH and PRL secretion in a pituitary adenoma. Although pathogenic mechanisms implicated remain largely speculative, it emphasizes the need for long term hormonal follow up of patients harboring prolactinomas

    European-South Africa collaboration on the genetic basis of gonadotropin-releasing hormone deficiency in failure to progress through puberty and infertility

    Get PDF
    Reproductive capacity, the key element for species survival, depends on a complex organ network involving the hypothalamus, pituitary, gonads, and internal and external genitalia. This system is centrally controlled by incompletely understood neuroendocrine mechanisms integrated at the hypothalamic level, whose elucidation is the research focus. Vertebrate reproduction depends entirely upon the neurosecretion of the decapeptide gonadotropin-releasing hormone (GnRH) from less than 4 000 GnRH neurons in the preoptic area of the hypothalamus.http://www.jemdsa.co.za/index.php/JEMDSAhb201

    Clinical Management of Congenital Hypogonadotropic Hypogonadism

    Get PDF
    The initiation and maintenance of reproductive capacity in humans is dependent on pulsatile secretion of the hypothalamic hormone GnRH. Congenital hypogonadotropic hypogonadism (CHH) is a rare disorder that results from the failure of the normal episodic GnRH secretion, leading to delayed puberty and infertility. CHH can be associated with an absent sense of smell, also termed Kallmann syndrome, or with other anomalies. CHH is characterized by rich genetic heterogeneity, with mutations in >30 genes identified to date acting either alone or in combination. CHH can be challenging to diagnose, particularly in early adolescence where the clinical picture mirrors that of constitutional delay of growth and puberty. Timely diagnosis and treatment will induce puberty, leading to improved sexual, bone, metabolic, and psychological health. In most cases, patients require lifelong treatment, yet a notable portion of male patients (approximate to 10% to 20%) exhibit a spontaneous recovery of their reproductive function. Finally, fertility can be induced with pulsatile GnRH treatment or gonadotropin regimens in most patients. In summary, this review is a comprehensive synthesis of the current literature available regarding the diagnosis, patient management, and genetic foundations of CHH relative to normal reproductive development.Peer reviewe

    Fat-to-glucose interconversion by hydrodynamic transfer of two glyoxylate cycle enzyme genes

    Get PDF
    The glyoxylate cycle, which is well characterized in higher plants and some microorganisms but not in vertebrates, is able to bypass the citric acid cycle to achieve fat-to-carbohydrate interconversion. In this context, the hydrodynamic transfer of two glyoxylate cycle enzymes, such as isocytrate lyase (ICL) and malate synthase (MS), could accomplish the shift of using fat for the synthesis of glucose. Therefore, 20 mice weighing 23.37 ± 0.96 g were hydrodinamically gene transferred by administering into the tail vein a bolus with ICL and MS. After 36 hours, body weight, plasma glucose, respiratory quotient and energy expenditure were measured. The respiratory quotient was increased by gene transfer, which suggests that a higher carbohydrate/lipid ratio is oxidized in such animals. This application could help, if adequate protocols are designed, to induce fat utilization for glucose synthesis, which might be eventually useful to reduce body fat depots in situations of obesity and diabetes

    Pathogenic mosaic variants in congenital hypogonadotropic hypogonadism

    Full text link
    PURPOSE Congenital hypogonadotropic hypogonadism (CHH) is a rare disorder resulting in absent puberty and infertility. The genetic architecture is complex with multiple loci involved, variable expressivity, and incomplete penetrance. The majority of cases are sporadic, consistent with a disease affecting fertility. The current study aims to investigate mosaicism as a genetic mechanism for CHH, focusing on de novo rare variants in CHH genes. METHODS We evaluated 60 trios for de novo rare sequencing variants (RSV) in known CHH genes using exome sequencing. Potential mosaicism was suspected among RSVs with altered allelic ratios and confirmed using customized ultradeep sequencing (UDS) in multiple tissues. RESULTS Among the 60 trios, 10 probands harbored de novo pathogenic variants in CHH genes. Custom UDS demonstrated that three of these de novo variants were in fact postzygotic mosaicism-two in FGFR1 (p.Leu630Pro and p.Gly348Arg), and one in CHD7 (p.Arg2428*). Statistically significant variation across multiple tissues (DNA from blood, buccal, hair follicle, urine) confirmed their mosaic nature. CONCLUSIONS We identified a significant number of de novo pathogenic variants in CHH of which a notable number (3/10) exhibited mosaicism. This report of postzygotic mosaicism in CHH patients provides valuable information for accurate genetic counseling

    Neuron-Derived Neurotrophic Factor Is Mutated in Congenital Hypogonadotropic Hypogonadism

    Get PDF
    Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disorder characterized by infertility and the absence of puberty. Defects in GnRH neuron migration or altered GnRH secretion and/or action lead to a severe gonadotropin-releasing hormone (GnRH) deficiency. Given the close developmental association of GnRH neurons with the olfactory primary axons, CHH is often associated with anosmia or hyposmia, in which case it is defined as Kallmann syndrome (KS). The genetics of CHH are heterogeneous, and >40 genes are involved either alone or in combination. Several CHH-related genes controlling GnRH ontogeny encode proteins containing fibronectin-3 (FN3) domains, which are important for brain and neural development. Therefore, we hypothesized that defects in other FN3-superfamily genes would underlie CHH. Next-generation sequencing was performed for 240 CHH unrelated probands and filtered for rare, protein-truncating variants (PTVs) in FN3-superfamily genes. Compared to gnomAD controls the CHH cohort was statistically enriched for PTVs in neuron-derived neurotrophic factor (NDNF) (p = 1.40 x 10(-6)). Three heterozygous PTVs (p.Lys62*, p.Tyr128Thrfs*55, and p.Trp469*, all absent from the gnomAD database) and an additional heterozygous missense mutation (p.Thr201Ser) were found in four KS probands. Notably, NDNF is expressed along the GnRH neuron migratory route in both mouse embryos and human fetuses and enhances GnRH neuron migration. Further, knock down of the zebrafish ortholog of NDNF resulted in altered GnRH migration. Finally, mice lacking Ndnf showed delayed GnRH neuron migration and altered olfactory axonal projections to the olfactory bulb; both results are consistent with a role of NDNF in GnRH neuron development. Altogether, our results highlight NDNF as a gene involved in the GnRH neuron migration implicated in KS.Peer reviewe

    An ancient founder mutation in PROKR2 impairs human reproduction

    Get PDF
    Congenital gonadotropin-releasing hormone (GnRH) deficiency manifests as absent or incomplete sexual maturation and infertility. Although the disease exhibits marked locus and allelic heterogeneity, with the causal mutations being both rare and private, one causal mutation in the prokineticin receptor, PROKR2 L173R, appears unusually prevalent among GnRH-deficient patients of diverse geographic and ethnic origins. To track the genetic ancestry of PROKR2 L173R, haplotype mapping was performed in 22 unrelated patients with GnRH deficiency carrying L173R and their 30 first-degree relatives. The mutation's age was estimated using a haplotype-decay model. Thirteen subjects were informative and in all of them the mutation was present on the same ∼123 kb haplotype whose population frequency is ≤10%. Thus, PROKR2 L173R represents a founder mutation whose age is estimated at approximately 9000 years. Inheritance of PROKR2 L173R-associated GnRH deficiency was complex with highly variable penetrance among carriers, influenced by additional mutations in the other PROKR2 allele (recessive inheritance) or another gene (digenicity). The paradoxical identification of an ancient founder mutation that impairs reproduction has intriguing implications for the inheritance mechanisms of PROKR2 L173R-associated GnRH deficiency and for the relevant processes of evolutionary selection, including potential selective advantages of mutation carriers in genes affecting reproductio

    Subklinische Hypothyreose: Risiken, aktuelle Empfehlungen und randomisierte Studie in der Schweiz

    Get PDF
    Quintessenz: • Die subklinische Hypothyreose ist definiert durch erhöhte TSH und normwertige ThyroxinSpiegel; sie kommt bei älteren Patienten häufig vor (10–15%). • Daten aus Beobachtungsstudien zeigen einen möglichen Zusammenhang zwischen der subklinischen Hypothyreose und verschiedenen Krankheitsbildern wie kardiovaskulären Erkrankungen, Muskelbeschwerden sowie depressiven oder kognitiven Störungen. • Die Indikation zur Thyroxin Substitution bei subklinischer Hypothyreose ist derzeit noch nicht klar, was sich in grossen Unterschieden bezüglich Therapie zwischen verschiedenen Ländern niederschlägt. Es zeigt sich jedoch eine Zunahme der ThyroxinVerschreibungen. • Die Teilnahme an der randomisierten TRUST Studie ist die derzeit beste «Behandlungsoption» für ältere Patienten mit subklinischer Hypothyreose

    KLB , encoding β‐Klotho, is mutated in patients with congenital hypogonadotropic hypogonadism

    Get PDF
    Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic form of isolated gonadotropin‐releasing hormone (GnRH) deficiency caused by mutations in > 30 genes. Fibroblast growth factor receptor 1 (FGFR1) is the most frequently mutated gene in CHH and is implicated in GnRH neuron development and maintenance. We note that a CHH FGFR1 mutation (p.L342S) decreases signaling of the metabolic regulator FGF21 by impairing the association of FGFR1 with β‐Klotho (KLB), the obligate co‐receptor for FGF21. We thus hypothesized that the metabolic FGF21/KLB/FGFR1 pathway is involved in CHH. Genetic screening of 334 CHH patients identified seven heterozygous loss‐of‐function KLB mutations in 13 patients (4%). Most patients with KLB mutations (9/13) exhibited metabolic defects. In mice, lack of Klb led to delayed puberty, altered estrous cyclicity, and subfertility due to a hypothalamic defect associated with inability of GnRH neurons to release GnRH in response to FGF21. Peripheral FGF21 administration could indeed reach GnRH neurons through circumventricular organs in the hypothalamus. We conclude that FGF21/KLB/FGFR1 signaling plays an essential role in GnRH biology, potentially linking metabolism with reproduction
    corecore