759 research outputs found

    Activated PI3 Kinase Delta Syndrome: From Genetics to Therapy.

    Get PDF
    Activated PI3 kinase delta syndrome (APDS) is a primary immunodeficiency caused by dominant mutations that increase activity of phosphoinositide-3-kinase δ (PI3Kδ). APDS can be caused by mutations in the PIK3CD gene that encodes PI3Kδ catalytic subunit p110δ (APDS1) or mutations in the PIK3R1 gene that encodes regulatory subunit p85α (APDS2). APDS research advanced rapidly after the initial discovery in 2013. More than 200 APDS patients have been identified around the world. Multiple novel APDS mutations were reported and molecular mechanisms leading to PI3Kδ activation have been elucidated. The finding of APDS significantly increased our understanding of the role of PI3Kδ in the human immune system. Perhaps most importantly, discovery of the molecular basis of this primary immunodeficiency suggested that APDS patients, who previously received only non-specific therapy, could be treated by a novel class of drugs that inhibits PI3Kδ activity. This led to the ongoing clinical trials of selective PI3Kδ inhibitors in APDS patients. Overall, the APDS story provides an excellent example of translational research, beginning with patients who had an unknown disease cause and leading to a novel specific knowledge-based treatment

    Genetic influences of the intercellular adhesion molecule 1 (ICAM-1) gene polymorphisms in development of Type 1 diabetes and diabetic nephropathy

    Get PDF
    AIM: The intercellular adhesion molecule-1 (ICAM-1) gene is located on chromosome 19p13, which is linked to Type 1 diabetes (T1D). ICAM-1 expression is related to development of T1D and diabetic nephropathy. The present study aims to evaluate the genetic influence of ICAM-1 gene polymorphisms on the development of T1D and diabetic nephropathy. METHODS: Five valid single nucleotide polymorphisms (SNPs) were genotyped in 432 T1D patients (196 patients had diabetic nephropathy) and 187 non-diabetic control subjects by using dynamic allele-specific hybridization (DASH) and pyrosequencing. RESULTS: SNPs rs281432(C/G) and rs5498 E469K(A/G) had high heterozygous indexes. They were significantly associated with T1D [P = 0.026, OR = 1.644 (95% CI 1.138–2.376) and P < 0.001, OR = 2.456 (1.588–3.8)]. Frequencies of the C allele in SNP rs281432(C/G) and the A allele in SNP rs5498 E469K(A/G) increased stepwise from non-diabetic control subjects to T1D patients without diabetic nephropathy and T1D patients with diabetic nephropathy. Further analysis for these two SNPs indicated that T1D patients had increased frequency of the common haplotype C-A, in comparison with non-diabetic control subjects (38.1 vs. 32.1%, P = 0.035). CONCLUSION: The present study provided evidence that SNPs rs281432(C/G) and rs5498 E469K(A/G) in the ICAM-1 gene confer susceptibility to the development of T1D and might also be associated with diabetic nephropathy in Swedish Caucasians

    Novel PLCG2 Mutation in a Patient With APLAID and Cutis Laxa.

    Get PDF
    Background: The auto-inflammation and phospholipase Cγ2 (PLCγ2)-associated antibody deficiency and immune dysregulation (APLAID) syndrome is a rare primary immunodeficiency caused by a gain-of-function mutation S707Y in the PLCG2 gene previously described in two patients from one family. The APLAID patients presented with early-onset blistering skin lesions, posterior uveitis, inflammatory bowel disease (IBD) and recurrent sinopulmonary infections caused by a humoral defect, but lacked circulating autoantibodies and had no cold-induced urticaria, contrary to the patients with the related PLAID syndrome. Case: We describe a new APLAID patient who presented with vesiculopustular rash in the 1st weeks of life, followed by IBD, posterior uveitis, recurrent chest infections, interstitial pneumonitis, and also had sensorineural deafness and cutis laxa. Her disease has been refractory to most treatments, including IL1 blockers and a trial with ruxolitinib has been attempted. Results: In this patient, we found a unique de novo heterozygous missense L848P mutation in the PLCG2 gene, predicted to affect the PLCγ2 structure. Similarly to S707Y, the L848P mutation led to the increased basal and EGF-stimulated PLCγ2 activity in vitro. Whole blood assays showed reduced production of IFN-γ and IL-17 in response to polyclonal T-cell stimulation and reduced production of IL-10 and IL-1β after LPS stimulation. Reduced IL-1β levels and the lack of clinical response to treatment with IL-1 blockers argue against NLRP3 inflammasome hyperactivation being the main mechanism mediating the APLAID pathogenesis. Conclusion: Our findings indicate that L848P is novel a gain-of-function mutation that leads to PLCγ2 activation and suggest cutis laxa as a possible clinical manifestations of the APLAID syndrome

    Inference of disease associations with unmeasured genetic variants by combining results from genome-wide association studies with linkage disequilibrium patterns in a reference data set

    Get PDF
    Results from whole-genome association studies of many common diseases are now available. Increasingly, these are being incorporated into meta-analyses to increase the power to detect weak associations with measured single-nucleotide polymorphisms (SNPs). Imputation of genotypes at unmeasured loci has been widely applied using patterns of linkage disequilibrium (LD) observed in the HapMap panels, but there is a need for alternative methods that can utilize the pooled effect estimates from meta-analyses and explore possible associations with SNPs and haplotypes that are not included in HapMap

    Novel IL2RG Mutation Causes Leaky TLOWB+NK+ SCID With Nodular Regenerative Hyperplasia and Normal IL-15 STAT5 Phosphorylation

    Get PDF
    X-linked severe combined immunodeficiency disease (SCID) is caused by mutations in the interleukin (IL)-2 receptor γ (IL2RG) gene and patients usually present with a TBNK SCID phenotype. Nevertheless, a minority of these patients present with a TBNK phenotype, similar to the IL-7R-deficient patients. We report a patient with a novel missense p.Glu297Gly mutation in the IL2RG gene presenting with a leaky TBNK SCID with delayed onset, moderate susceptibility to infections, and nodular regenerative hyperplasia. He presents with preserved STAT5 tyrosine phosphorylation in response to IL-15 stimulation but not in response to IL-2 and IL-7, resulting in the NK phenotype.info:eu-repo/semantics/publishedVersio

    Microevolution of extensively drug-resistant tuberculosis in Russia.

    No full text
    Extensively drug-resistant (XDR) tuberculosis (TB), which is resistant to both first- and second-line antibiotics, is an escalating problem, particularly in the Russian Federation. Molecular fingerprinting of 2348 Mycobacterium tuberculosis isolates collected in Samara Oblast, Russia, revealed that 72%belonged to the Beijing lineage, a genotype associated with enhanced acquisition of drug resistance and increased virulence. Whole-genome sequencing of 34 Samaran isolates, plus 25 isolates representing global M. tuberculosis complex diversity, revealed that Beijing isolates originating in Eastern Europe formed a monophyletic group. Homoplasic polymorphisms within this clade were almost invariably associated with antibiotic resistance, indicating that the evolution of this population is primarily driven by drug therapy. Resistance genotypes showed a strong correlation with drug susceptibility phenotypes. A novel homoplasic mutation in rpoC, found only in isolates carrying a common rpoB rifampicin-resistance mutation, may play a role in fitness compensation. Most multidrug-resistant (MDR) isolates also had mutations in the promoter of a virulence gene, eis, which increase its expression and confer kanamycin resistance. Kanamycin therapy may thus select for mutants with increased virulence, helping preserve bacterial fitness and promoting transmission of drug-resistant TB strains. The East European clade was dominated by two MDR clusters, each disseminated across Samara. Polymorphisms conferring fluoroquinolone resistance were independently acquired multiple times within each cluster, indicating that XDR TB is currently not widely transmitted. © 2012 by Cold Spring Harbor Laboratory Press

    Evaluation of the association between the common E469K polymorphism in the ICAM-1 gene and diabetic nephropathy among type 1 diabetic patients in GoKinD population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ICAM-1 gene is a strong positional and biological candidate for susceptibility to the development of T1D and DN. We have recently demonstrated that SNP rs5498(E469K) confers susceptibility to the development of T1D and might be associated with DN in Swedish Caucasians. The present study aimed to further evaluate the association between the ICAM-1 genetic polymorphisms and DN.</p> <p>Methods</p> <p>Two common non-synonymous SNPs, including rs5498(E469K) and rs1799969(R241G), in the ICAM-1 gene were genotyped in 662 (312 female/350 male) T1D patients with DN and 620 (369/251) without DN. All patients were selected from the GoKinD study.</p> <p>Results</p> <p>Genotype distributions of both SNPs were in Hardy-Weinberg equilibrium but SNP rs5498(E469K) had high heterozygous index. In this SNP, the heterozygosity and positivity for the allele G were found to be significantly associated with DN in female T1D patients (P = 0.010, OR = 0.633, CI 95% 0.447–0.895 and P = 0.026, OR = 0.692, CI 95% 0.500–0.958). Furthermore, the female patients without DN carrying three genotypes A/A, A/G and G/G had different cystatin levels (0.79 ± 0.17, 0.81 ± 0.14 and 0.75 ± 0.12 mg/L, P = 0.021). No significant association of SNP rs1799969 (R241G) with DN was found.</p> <p>Conclusion</p> <p>The present study provides further evidence that SNP rs5498(E469K) in the ICAM-1 gene presents a high heterozygous index and the allele G of this polymorphism may confers the decreased risk susceptibility to the development of DN in female T1D patients among the GoKinD population.</p
    corecore