161 research outputs found

    Student responses to the introduction of case-based learning and practical activities into a theoretical obstetrics and gynaecology teaching programme

    Get PDF
    BACKGROUND: The fourth-year Obstetrics and Gynaecology course at our institution had previously been taught using theory classes alone. A new teaching model was introduced to provide a better link with professional practice. We wished to evaluate the impact of the introduction of case discussions and other practical activities upon students' perceptions of the learning process. METHODS: Small-group discussions of cases and practical activities were introduced for the teaching of a fourth-year class in 2003 (Group II; 113 students). Comparisons were made with the fourth-year class of 2002 (Group I; 108 students), from before the new programme was introduced. Students were asked to rate their satisfaction with various elements of the teaching programme. Statistical differences in their ratings were analysed using the chi-square and Bonferroni tests. RESULTS: Group II gave higher ratings to the clarity of theory classes and lecturers' teaching abilities (p < 0.05) and lecturers' punctuality (p < 0.001) than did Group I. Group II had greater belief that the knowledge assessment tests were useful (p < 0.001) and that their understanding of the subject was good (p < 0.001) than did Group I. Group II gave a higher overall rating to the course (p < 0.05) than did Group I. However, there was no difference in the groups' assessments of the use made of the timetabled hours available for the subject or lecturers' concern for students' learning. CONCLUSIONS: Students were very receptive to the new teaching model

    Comparison of Statistical Algorithms for the Detection of Infectious Disease Outbreaks in Large Multiple Surveillance Systems

    Get PDF
    A large-scale multiple surveillance system for infectious disease outbreaks has been in operation in England and Wales since the early 1990s. Changes to the statistical algorithm at the heart of the system were proposed and the purpose of this paper is to compare two new algorithms with the original algorithm. Test data to evaluate performance are created from weekly counts of the number of cases of each of more than 2000 diseases over a twenty-year period. The time series of each disease is separated into one series giving the baseline (background) disease incidence and a second series giving disease outbreaks. One series is shifted forward by twelve months and the two are then recombined, giving a realistic series in which it is known where outbreaks have been added. The metrics used to evaluate performance include a scoring rule that appropriately balances sensitivity against specificity and is sensitive to variation in probabilities near 1. In the context of disease surveillance, a scoring rule can be adapted to reflect the size of outbreaks and this was done. Results indicate that the two new algorithms are comparable to each other and better than the algorithm they were designed to replace

    Early Detection of Tuberculosis Outbreaks among the San Francisco Homeless: Trade-Offs Between Spatial Resolution and Temporal Scale

    Get PDF
    BACKGROUND: San Francisco has the highest rate of tuberculosis (TB) in the U.S. with recurrent outbreaks among the homeless and marginally housed. It has been shown for syndromic data that when exact geographic coordinates of individual patients are used as the spatial base for outbreak detection, higher detection rates and accuracy are achieved compared to when data are aggregated into administrative regions such as zip codes and census tracts. We examine the effect of varying the spatial resolution in the TB data within the San Francisco homeless population on detection sensitivity, timeliness, and the amount of historical data needed to achieve better performance measures. METHODS AND FINDINGS: We apply a variation of space-time permutation scan statistic to the TB data in which a patient's location is either represented by its exact coordinates or by the centroid of its census tract. We show that the detection sensitivity and timeliness of the method generally improve when exact locations are used to identify real TB outbreaks. When outbreaks are simulated, while the detection timeliness is consistently improved when exact coordinates are used, the detection sensitivity varies depending on the size of the spatial scanning window and the number of tracts in which cases are simulated. Finally, we show that when exact locations are used, smaller amount of historical data is required for training the model. CONCLUSION: Systematic characterization of the spatio-temporal distribution of TB cases can widely benefit real time surveillance and guide public health investigations of TB outbreaks as to what level of spatial resolution results in improved detection sensitivity and timeliness. Trading higher spatial resolution for better performance is ultimately a tradeoff between maintaining patient confidentiality and improving public health when sharing data. Understanding such tradeoffs is critical to managing the complex interplay between public policy and public health. This study is a step forward in this direction

    Severity Assessment of Lower Respiratory Tract Infection in Malawi: Derivation of a Novel Index (SWAT-Bp) Which Outperforms CRB-65

    Get PDF
    OBJECTIVE: To assess the validity of CRB-65 (Confusion, Respiratory rate >30 breaths/min, BP<90/60 mmHg, age >65 years) as a pneumonia severity index in a Malawian hospital population, and determine whether an alternative score has greater accuracy in this setting. DESIGN: Forty three variables were prospectively recorded during the first 48 hours of admission in all patients admitted to Queen Elizabeth Central Hospital, Malawi, for management of lower respiratory tract infection over a two month period (N = 240). Calculation of sensitivity and specificity for CRB-65 in predicting mortality was followed by multivariate modeling to create a score with superior performance in this population. RESULTS: Median age 37, HIV prevalence 79.9%, overall mortality 18.3%. CRB-65 predicted mortality poorly, indicated by the area under the ROC curve of 0.649. Independent predictors of death were: Male sex, “S” (AOR 2.6); Wasting, “W” (AOR 6.6); non-ambulatory, “A” (AOR 2.5); Temp >38°C or <35°C, “T” (AOR 3.2); BP<100/60, “Bp” (AOR 3.7). Combining these factors to form a severity index (SWAT-Bp) predicted mortality with high sensitivity and specificity (AUC: 0.867). Mortality for scores 0–5 was 0%, 3.3%, 7.4%, 29.2%, 61.5% and 87.5% respectively. A score ≥3 was 84% sensitive and 77% specific for mortality prediction, with a negative predictive value of 95.8%. CONCLUSION: CRB-65 performs poorly in this population. The SWAT-Bp score can accurately stratify patients; ≤2 indicates non-severe infection (mortality 4.4%) and ≥3 severe illness (mortality 45%)

    Comorbidities of obesity in school children: a cross-sectional study in the PIAMA birth cohort

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is ample evidence that childhood overweight is associated with increased risk of chronic disease in adulthood. The aim of this study was to investigate associations between childhood overweight and common childhood health problems.</p> <p>Methods</p> <p>Data were used from a general population sample of 3960 8-year-old children, participating in the Dutch PIAMA birth cohort study. Weight and height, measured by the investigators, were used to define BMI status (thinness, normal weight, moderate overweight, obesity). BMI status was studied cross-sectionally in relation to the following parental reported outcomes: a general health index, GP visits, school absenteeism due to illness, health-related functional limitations, doctor diagnosed respiratory infections and use of antibiotics.</p> <p>Results</p> <p>Obesity was significantly associated with a lower general health score, more GP visits, more school absenteeism and more health-related limitations, (adjusted odds ratios around 2.0 for most outcomes). Obesity was also significantly associated with bronchitis (adjusted odds ratio (aOR) and 95% confidence intervals (95%CI): 5.29 (2.58;10.85) and with the use of antibiotics (aOR (95%CI): 1.79 (1.09;2.93)). Associations with flu/serious cold, ear infection and throat infection were positive, but not statistically significant. Moderate overweight was not significantly associated with the health outcomes studied.</p> <p>Conclusion</p> <p>Childhood obesity is not merely a risk factor for disease in adulthood, but obese children may experience more illness and health related problems already in childhood. The high prevalence of the outcomes studied implies a high burden of disease in terms of absolute numbers of sick children.</p

    Circulating Pneumolysin Is a Potent Inducer of Cardiac Injury during Pneumococcal Infection

    Get PDF
    Streptococcus pneumoniae accounts for more deaths worldwide than any other single pathogen through diverse disease manifestations including pneumonia, sepsis and meningitis. Life-threatening acute cardiac complications are more common in pneumococcal infection compared to other bacterial infections. Distinctively, these arise despite effective antibiotic therapy. Here, we describe a novel mechanism of myocardial injury, which is triggered and sustained by circulating pneumolysin (PLY). Using a mouse model of invasive pneumococcal disease (IPD), we demonstrate that wild type PLY-expressing pneumococci but not PLY-deficient mutants induced elevation of circulating cardiac troponins (cTns), well-recognized biomarkers of cardiac injury. Furthermore, elevated cTn levels linearly correlated with pneumococcal blood counts (r=0.688, p=0.001) and levels were significantly higher in non-surviving than in surviving mice. These cTn levels were significantly reduced by administration of PLY-sequestering liposomes. Intravenous injection of purified PLY, but not a non-pore forming mutant (PdB), induced substantial increase in cardiac troponins to suggest that the pore-forming activity of circulating PLY is essential for myocardial injury in vivo. Purified PLY and PLY-expressing pneumococci also caused myocardial inflammatory changes but apoptosis was not detected. Exposure of cultured cardiomyocytes to PLY-expressing pneumococci caused dose-dependent cardiomyocyte contractile dysfunction and death, which was exacerbated by further PLY release following antibiotic treatment. We found that high PLY doses induced extensive cardiomyocyte lysis, but more interestingly, sub-lytic PLY concentrations triggered profound calcium influx and overload with subsequent membrane depolarization and progressive reduction in intracellular calcium transient amplitude, a key determinant of contractile force. This was coupled to activation of signalling pathways commonly associated with cardiac dysfunction in clinical and experimental sepsis and ultimately resulted in depressed cardiomyocyte contractile performance along with rhythm disturbance. Our study proposes a detailed molecular mechanism of pneumococcal toxin-induced cardiac injury and highlights the major translational potential of targeting circulating PLY to protect against cardiac complications during pneumococcal infections

    A Methodological Framework for the Evaluation of Syndromic Surveillance Systems: A Case Study of England

    Get PDF
    Background: Syndromic surveillance complements traditional public health surveillance by collecting and analysing health indicators in near real time. The rationale of syndromic surveillance is that it may detect health threats faster than traditional surveillance systems permitting more timely, and hence potentially more effective public health action. The effectiveness of syndromic surveillance largely relies on the methods used to detect aberrations. Very few studies have evaluated the performance of syndromic surveillance systems and consequently little is known about the types of events that such systems can and cannot detect. Methods: We introduce a framework for the evaluation of syndromic surveillance systems that can be used in any setting based upon the use of simulated scenarios. For a range of scenarios this allows the time and probability of to be determined and uncertainty is fully incorporated. In addition, we demonstrate how such a framework can model the benefits of increases in the number of centres reporting syndromic data and also determine the minimum size of outbreaks that can or cannot be detected. Here, we demonstrate its utility using simulations of national influenza outbreaks and localised outbreaks of cryptosporidiosis. Results: Influenza outbreaks are consistently detected with larger outbreaks being detected in a more timely manner. Small cryptosporidiosis outbreaks (<1000 symptomatic individuals) are unlikely to be detected. We also demonstrate the advantages of having multiple syndromic data streams (e.g. emergency attendance data, telephone helpline data, general practice consultation data) as different streams are able to detect different types outbreaks with different efficacy (e.g. emergency attendance data are useful for the detection of pandemic influenza but not for outbreaks of cryptosporidiosis). We also highlight that for any one disease, the utility of data streams may vary geographically, and that the detection ability of syndromic surveillance varies seasonally (e.g. an influenza outbreak starting in July is detected sooner than one starting later in the year). We argue that our framework constitutes a useful tool for public health emergency preparedness in multiple settings. Conclusions: The proposed framework allows the exhaustive evaluation of any syndromic surveillance system and constitutes a useful tool for emergency preparedness and response

    T Regulatory Cells Control Susceptibility to Invasive Pneumococcal Pneumonia in Mice

    Get PDF
    Streptococcus pneumoniae is an important human pathogen responsible for a spectrum of diseases including pneumonia. Immunological and pro-inflammatory processes induced in the lung during pneumococcal infection are well documented, but little is known about the role played by immunoregulatory cells and cytokines in the control of such responses. We demonstrate considerable differences in the immunomodulatory cytokine transforming growth factor (TGF)-β between the pneumococcal pneumonia resistant BALB/c and susceptible CBA/Ca mouse strains. Immunohistochemistry and flow cytometry reveal higher levels of TGF-β protein in BALB/c lungs during pneumococcal pneumonia that correlates with a rapid rise in lung Foxp3+Helios+ T regulatory cells. These cells have protective functions during pneumococcal pneumonia, because blocking their induction with an inhibitor of TGF-β impairs BALB/c resistance to infection and aids bacterial dissemination from lungs. Conversely, adoptive transfer of T regulatory cells to CBA/Ca mice, prior to infection, prolongs survival and decreases bacterial dissemination from lungs to blood. Importantly, strong T regulatory cell responses also correlate with disease-resistance in outbred MF1 mice, confirming the importance of immunoregulatory cells in controlling protective responses to the pneumococcus. This study provides exciting new evidence for the importance of immunomodulation during pulmonary pneumococcal infection and suggests that TGF-β signalling is a potential target for immunotherapy or drug design
    corecore