223 research outputs found

    Diversity and biosynthetic potential of culturable microbes associated with toxic marine animals

    Get PDF
    Tetrodotoxin (TTX) is a neurotoxin that has been reported from taxonomically diverse organisms across 14 different phyla. The biogenic origin of tetrodotoxin is still disputed, however, TTX biosynthesis by host-associated bacteria has been reported. An investigation into the culturable microbial populations from the TTX-associated blue-ringed octopus Hapalochlaena sp. and sea slug Pleurobranchaea maculata revealed a surprisingly high microbial diversity. Although TTX was not detected among the cultured isolates, PCR screening identifiedsome natural product biosynthesis genes putatively involved in its assembly. This study is the first to report on the microbial diversity of culturable communities from H. maculosa and P. maculata and common natural product biosynthesis genes from their microbiota. We also reassess the production of TTX reported from three bacterial strains isolated from the TTX-containing gastropod Nassarius semiplicatus

    Use of Ion-Channel Modulating Agents to Study Cyanobacterial Na(+) - K(+) Fluxes

    Get PDF
    Here we describe an experimental design aimed to investigate changes in total cellular levels of Na(+) and K(+) ions in cultures of freshwater filamentous cyanobacteria. Ion concentrations were measured in whole cells by flame photometry. Cellular Na(+) levels increased exponentially with rising alkalinity, with K(+) levels being maximal for optimal growth pH (~8). At standardized pH conditions, the increase in cellular Na(+), as induced by NaCl at 10 mM, was coupled by the two sodium channel-modulating agents lidocaine hydrochloride at 1 μM and veratridine at 100 μM. Both the channel-blockers amiloride (1 mM) and saxitoxin (1 μM), decreased cell-bound Na(+) and K(+) levels. Results presented demonstrate the robustness of well-defined channel blockers and channel-activators in the study of cyanobacterial Na(+)- K(+) fluxes

    Characterisation of the paralytic shellfish toxin biosynthesis gene clusters in Anabaena circinalis AWQC131C and Aphanizomenon sp. NH-5

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Saxitoxin and its analogues collectively known as the paralytic shellfish toxins (PSTs) are neurotoxic alkaloids and are the cause of the syndrome named paralytic shellfish poisoning. PSTs are produced by a unique biosynthetic pathway, which involves reactions that are rare in microbial metabolic pathways. Nevertheless, distantly related organisms such as dinoflagellates and cyanobacteria appear to produce these toxins using the same pathway. Hypothesised explanations for such an unusual phylogenetic distribution of this shared uncommon metabolic pathway, include a polyphyletic origin, an involvement of symbiotic bacteria, and horizontal gene transfer.</p> <p>Results</p> <p>We describe the identification, annotation and bioinformatic characterisation of the putative paralytic shellfish toxin biosynthesis clusters in an Australian isolate of <it>Anabaena circinalis </it>and an American isolate of <it>Aphanizomenon sp</it>., both members of the <it>Nostocales</it>. These putative PST gene clusters span approximately 28 kb and contain genes coding for the biosynthesis and export of the toxin. A putative insertion/excision site in the Australian <it>Anabaena circinalis </it>AWQC131C was identified, and the organization and evolution of the gene clusters are discussed. A biosynthetic pathway leading to the formation of saxitoxin and its analogues in these organisms is proposed.</p> <p>Conclusion</p> <p>The PST biosynthesis gene cluster presents a mosaic structure, whereby genes have apparently transposed in segments of varying size, resulting in different gene arrangements in all three <it>sxt </it>clusters sequenced so far. The gene cluster organizational structure and sequence similarity seems to reflect the phylogeny of the producer organisms, indicating that the gene clusters have an ancient origin, or that their lateral transfer was also an ancient event. The knowledge we gain from the characterisation of the PST biosynthesis gene clusters, including the identity and sequence of the genes involved in the biosynthesis, may also afford the identification of these gene clusters in dinoflagellates, the cause of human mortalities and significant financial loss to the tourism and shellfish industries.</p

    A Putative Gene Cluster from a Lyngbya wollei Bloom that Encodes Paralytic Shellfish Toxin Biosynthesis

    Get PDF
    Saxitoxin and its analogs cause the paralytic shellfish-poisoning syndrome, adversely affecting human health and coastal shellfish industries worldwide. Here we report the isolation, sequencing, annotation, and predicted pathway of the saxitoxin biosynthetic gene cluster in the cyanobacterium Lyngbya wollei. The gene cluster spans 36 kb and encodes enzymes for the biosynthesis and export of the toxins. The Lyngbya wollei saxitoxin gene cluster differs from previously identified saxitoxin clusters as it contains genes that are unique to this cluster, whereby the carbamoyltransferase is truncated and replaced by an acyltransferase, explaining the unique toxin profile presented by Lyngbya wollei. These findings will enable the creation of toxin probes, for water monitoring purposes, as well as proof-of-concept for the combinatorial biosynthesis of these natural occurring alkaloids for the production of novel, biologically active compounds

    Investigation of the Biosynthetic Potential of Endophytes in Traditional Chinese Anticancer Herbs

    Get PDF
    Traditional Chinese medicine encompasses a rich empirical knowledge of the use of plants for the treatment of disease. In addition, the microorganisms associated with medicinal plants are also of interest as the producers of the compounds responsible for the observed plant bioactivity. The present study has pioneered the use of genetic screening to assess the potential of endophytes to synthesize bioactive compounds, as indicated by the presence of non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) genes. The total DNA extracts of 30 traditional Chinese herbs, were screened for functional genes involved in the biosynthesis of bioactive compounds. The four PCR screens were successful in targeting four bacterial PKS, six bacterial NRPS, ten fungal PKS and three fungal NRPS gene fragments. Analysis of the detected endophyte gene fragments afforded consideration of the possible bioactivity of the natural products produced by endophytes in medicinal herbs. This investigation describes a rapid method for the initial screening of medicinal herbs and has highlighted a subset of those plants that host endophytes with biosynthetic potential. These selected plants can be the focus of more comprehensive endophyte isolation and natural product studies

    Identification of promoter elements in the Dolichospermum circinale AWQC131C saxitoxin gene cluster and the experimental analysis of their use for heterologous expression

    Get PDF
    Background Dolichospermum circinale is a filamentous bloom-forming cyanobacterium responsible for biosynthesis of the paralytic shellfish toxins (PST), including saxitoxin. PSTs are neurotoxins and in their purified form are important analytical standards for monitoring the quality of water and seafood and biomedical research tools for studying neuronal sodium channels. More recently, PSTs have been recognised for their utility as local anaesthetics. Characterisation of the transcriptional elements within the saxitoxin (sxt) biosynthetic gene cluster (BGC) is a first step towards accessing these molecules for biotechnology. Results In D. circinale AWQC131C the sxt BGC is transcribed from two bidirectional promoter regions encoding five individual promoters. These promoters were identified experimentally using 5′ RACE and their activity assessed via coupling to a lux reporter system in E. coli and Synechocystis sp. PCC 6803. Transcription of the predicted drug/metabolite transporter (DMT) encoded by sxtPER was found to initiate from two promoters, PsxtPER1 and PsxtPER2. In E. coli, strong expression of lux from PsxtP, PsxtD and PsxtPER1 was observed while expression from Porf24 and PsxtPER2 was remarkably weaker. In contrast, heterologous expression in Synechocystis sp. PCC 6803 showed that expression of lux from PsxtP, PsxtPER1, and Porf24 promoters was statistically higher compared to the non-promoter control, while PsxtD showed poor activity under the described conditions. Conclusions Both of the heterologous hosts investigated in this study exhibited high expression levels from three of the five sxt promoters. These results indicate that the majority of the native sxt promoters appear active in different heterologous hosts, simplifying initial cloning efforts. Therefore, heterologous expression of the sxt BGC in either E. coli or Synechocystis could be a viable first option for producing PSTs for industrial or biomedical purposes

    Carotenoid analysis of Halophilic Archaea by Resonance Raman spectroscopy

    Get PDF
    This is the publisher's version, also available electronically from "http://online.liebertpub.com".Recently, halite and sulfate evaporate rocks have been discovered on Mars by the NASA rovers, Spirit and Opportunity. It is reasonable to propose that halophilic microorganisms could have potentially flourished in these settings. If so, biomolecules found in microorganisms adapted to high salinity and basic pH environments on Earth may be reliable biomarkers for detecting life on Mars. Therefore, we investigated the potential of Resonance Raman (RR) spectroscopy to detect biomarkers derived from microorganisms adapted to hypersaline environments. RR spectra were acquired using 488.0 and 514.5 nm excitation from a variety of halophilic archaea, including Halobacterium salinarum NRC-1, Halococcus morrhuae, and Natrinema pallidum. It was clearly demonstrated that RR spectra enhance the chromophore carotenoid molecules in the cell membrane with respect to the various protein and lipid cellular components. RR spectra acquired from all halophilic archaea investigated contained major features at approximately 1000, 1152, and 1505 cm−1. The bands at 1505 cm−1 and 1152 cm−1 are due to in-phase C=C (ν1 ) and C–C stretching ( ν2 ) vibrations of the polyene chain in carotenoids. Additionally, in-plane rocking modes of CH3 groups attached to the polyene chain coupled with C–C bonds occur in the 1000 cm−1 region. We also investigated the RR spectral differences between bacterioruberin and bacteriorhodopsin as another potential biomarker for hypersaline environments. By comparison, the RR spectrum acquired from bacteriorhodopsin is much more complex and contains modes that can be divided into four groups: the C=C stretches (1600–1500 cm−1), the CCH in-plane rocks (1400–1250 cm−1), the C–C stretches (1250–1100 cm−1), and the hydrogen out-of-plane wags (1000–700 cm−1). RR spectroscopy was shown to be a useful tool for the analysis and remote in situ detection of carotenoids from halophilic archaea without the need for large sample sizes and complicated extractions, which are required by analytical techniques such as high performance liquid chromatography and mass spectrometry

    Characteristics of a Microcystin-Degrading Bacterium under Alkaline Environmental Conditions

    Get PDF
    The pH of the water associated with toxic blooms of cyanobacteria is typically in the alkaline range; however, previously only microcystin-degrading bacteria growing in neutral pH conditions have been isolated. Therefore, we sought to isolate and characterize an alkali-tolerant microcystin-degrading bacterium from a water bloom using microcystin-LR. Analysis of the 16S rRNA gene sequence revealed that the isolated bacterium belonged to the genus Sphingopyxis, and the strain was named C-1. Sphingopyxis sp. C-1 can grow; at pH 11.0; however, the optimum pH for growth was pH 7.0. The microcystin degradation activity of the bacterium was the greatest between pH 6.52 and pH 8.45 but was also detected at pH 10.0. The mlrA homolog encoding the microcystin-degrading enzyme in the C-1 strain was conserved. We concluded that alkali-tolerant microcystin-degrading bacterium played a key role in triggering the rapid degradation of microcystin, leading to the disappearance of toxic water blooms in aquatic environments

    Alternariol 9- O

    Full text link

    Pseudovibrio denitrificans strain Z143-1, a heptylprodigiosin-producing bacterium isolated from a Philippine tunicate

    Get PDF
    Microbial isolate Z143-1 found to be associated with an unidentified tunicate was characterized due to its significant antimicrobial activity. Z143-1 is similar to Pseudovibrio ascidiaceicola and Pseudovibrio denitrificans in morphological, physiological and biochemical characteristics, except for its ability to ferment glucose and produce a characteristic red pigment. Fatty acid methyl ester analysis revealed a predominance of the fatty acid 18:1 ω7c at 80.55%, at levels slightly lower than the Pseudovibrio denitrificans type strain DN34T (87.7%). The mol% G+C of Z143-1 is 54.02, relatively higher than the Pseudovibrio denitrificans type strain DN34T and Pseudovibrio ascidiaceicola with mol% G+C of 51.7 and 51.4, respectively. However, phylogenetic analysis of the 16S rRNA gene sequence of Z143-1 showed 100% similarity with the Pseudovibrio denitrificans type strain DN34T. In this study, the bacterium Z143-1 is reported as a new strain of Pseudovibrio denitrificans. While there is no report of a secondary metabolite for Pseudovibrio denitrificans, Z143-1 produces the red pigment heptylprodigiosin, also known as 16-methyl-15-heptyl-prodiginine, which shows anti-Staphylococcus aureus activity
    corecore