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Abstract: Tetrodotoxin (TTX) is a neurotoxin that has been reported from taxonomically 

diverse organisms across 14 different phyla. The biogenic origin of tetrodotoxin is still 

disputed, however, TTX biosynthesis by host-associated bacteria has been reported.  

An investigation into the culturable microbial populations from the TTX-associated  

blue-ringed octopus Hapalochlaena sp. and sea slug Pleurobranchaea maculata revealed a 

surprisingly high microbial diversity. Although TTX was not detected among the cultured 

isolates, PCR screening identifiedsome natural product biosynthesis genes putatively 

involved in its assembly. This study is the first to report on the microbial diversity of 

culturable communities from H. maculosa and P. maculata and common natural product 

biosynthesis genes from their microbiota. We also reassess the production of TTX  

reported from three bacterial strains isolated from the TTX-containing gastropod  

Nassarius semiplicatus. 
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1. Introduction  

Soft-bodied marine organisms, particularly sessile or slow moving invertebrates, have evolved 

complex chemical defence systems to enhance their competitive fitness and, ultimately, survival [1]. 

Some of the common, but often complex, chemical defences serve to function as antifoulants, 

camouflaging agents, or UV-absorbing sunscreens. The same marine organisms possess little or no 

means of physical defence against predation and therefore aggressively combat predators with lethal 

toxins. The production of these toxins by such marine invertebrates is one of the most intriguing and 

intensely studied facets of natural chemical defence systems. The focus of this study is one of the 

better known, marine toxins, tetrodotoxin (TTX; Figure 1).  

Figure 1. Structures of tetrodotoxin and structurally-related toxins from marine algae and cyanobacteria. 

 

TTX is one of the most toxic natural substances known and symptoms of human TTX poisoning 

include numbness of the face and extremities, paralysis, respiratory failure, circulatory collapse, and 

death [2]. TTX is a sodium channel blocker and some TTX-bearing organisms, including Taricha 

newts and Tetraodontidae fish, nullify the auto-effect of the toxin by possessing TTX-resistant sodium 

channels [3] while other species, for example the shore crab Hemigrapsus sanguineus, have been 

found to produce TTX-binding compounds that are able to neutralize the effects of TTX [4].  

TTX has been reported from taxonomically diverse organisms across 14 different phyla [5], 

including puffer fish from the family Tetraodontidae from which it takes its name, the blue-ringed 

octopus Hapalochlaena maculosa [6], the grey side-gilled sea slug Pleurobranchaea maculate [7], and 

marine gastropod Nassarius semiplicatus [8]. The widespread occurrence strongly suggests that 

microorganisms are the true source of TTX in nature. It is unlikely that the complex biosynthetic 

machinery, responsible for TTX production, would have co-evolved in such numerous phylogenetically 

and environmentally diverse higher organisms and thus it has been proposed that TTX’s broad 

distribution may be due to horizontal transfer, via acquisition through the food chain, of TTX-producing 
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bacteria [9,10]. This hypothesis is supported by studies in which TTX-producing bacteria have been 

isolated from many different host organisms (reviewed in Chau et al., 2011 [5]).  

TTX-producing bacteria belonging to the genera Vibrio, Bacillus, and Pseudomonas have been 

isolated from numerous organisms including blue-ringed octopus (Hapalochlaena sp.), puffer fish 

(Fugu spp.), and deep-sea sediments [5]. Numerous studies have identified multiple species of toxic 

bacteria from a single host organism, suggesting that TTX-producing bacteria are abundant in these 

organisms. Twenty TTX-producing bacterial strains from at least two genera have been isolated from 

the common puffer fish Fugurubripes [11]. Similarly, 21 TTX-producing bacterial strains belonging to 

five genera have been isolated from the gastropod N. semiplicatus [8]. It is pertinent to note that most 

of these studies were performed prior to the 1990s, and thus 16S ribosomal RNA gene sequence 

analysis was not used as a tool for determining bacterial taxonomy and phylogeny, as it is today. 

Because of the inconsistencies thatare often encountered when classifying microorganisms using a 

polyphasic approach, there is an urgent need to reassess microbial communities derived from  

TTX-containing host organisms. 

Despite evidence of the bacterial production, some argument over TTX’s origin still exists. While 

TTX has been isolated from bacteria in some animals, it has been reported that some TTX associated 

organisms, such as Tarichatorosa, do not harbor toxic endosymbionts [12].  

Modern molecular tools have been developed that enable the identification of a microorganism’s 

genetic potential to biosynthesize discrete small bioactive molecules. Ultimate proof of TTX’s 

proposed microbial origin, or indeed that of any microbial natural product, can be achieved by 

identifying biosynthesis genes involved in its assembly. However, in the case of TTX, its biosynthetic 

pathway remains elusive, as does a stable and reliable microbial producer of the molecule. A number 

of TTX biosynthesis pathway proposals have been documented [13–15], however, no supporting or 

experimental evidence has been published. In addition, biosynthetic feeding studies incorporating  
14

C-labeled acetate and guanido-
14

C labeled arginine have failed to reveal the mechanism or pathway 

for TTX biosynthesis [16]. A focus of our research is to understand the biosynthesis of small, naturally 

occurring toxins by microorganisms at the molecular level. No conclusive evidence has been published 

for the biosynthesis of TTX, however, based on our understanding of biosynthesis gene clusters of 

guanidine-containing toxins saxitoxin and cylindrospermopsin and the dioxoadamantane-containing 

polyketide, TW93h [17–19] (Figure 1), we speculate that TTX is assembled by a hybrid polyketide 

synthase (PKS)/non-ribosomal peptide synthetase (NRPS) enzyme complex which possibly 

incorporates an amidinotransferase (AMT) [5]. The genes encoding TTX biosynthesis enzymes along 

with those associated with toxin regulation and transport are proposed to be clustered on a single 

genome, in a similar manner to other toxin biosynthesis pathways in bacteria. This study describes the 

initial isolation of microbial populations from two TTX-associated host organisms, Hapalochlaena sp. 

and P. maculata. Additionally, LC-MS methods were used to reassess the production of TTX from  

N. semiplicatus bacterial isolates that had been previously identified as TTX-producers using 

immunoassay-based methods [8]. 

In order to identify biosynthesis genes putatively involved in small molecule assembly, including 

TTX, we mined the genomes of a library of diverse bacteria, isolated from these organisms, using a 

degenerate PCR-based screening approach. Here we present the outcomes of our genome mining study 

and report on the diversity of the culturable microbial communities associated with these hosts. 
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2. Results and Discussion 

2.1. Bacterial Diversity in Toxic Hapalochlaena sp. and Pleurobranchaea maculata 

A total of 27 and 22 unique bacterial isolates were cultured from Hapalochlaena sp. and  

P. maculata, respectively. In order to classify these isolates, approximately 1400 bp of the 16S rRNA 

gene was successfully amplified and sequenced from each isolate (GenBank accession numbers 

JN618116 to JN618164) and analyzed using the NCBI BLASTn algorithm. This revealed that 

Alteromonadales were predominant, with 30 of 49 isolates accounted for by this taxonomic order 

(Tables 1 and 2). Pseudoalteromonas and Alteromonas were the major representatives of 

Alteromonadales in both host organisms.  

Table 1. Bacterial identification and screening for polyketide synthase (PKS), non-ribosomal 

peptide synthetase (NRPS), and amidinotransferase (AMT) genes related to tetrodotoxin 

(TTX)-biosynthesis in bacterial isolates from Hapalochlaena sp. 

Strain Closest 16S rRNA gene BLAST matcha 
Identity 

(%) 

PCR screening TTX  

Detectionb PKS NRPS AMT 

HM BE02 Alteromonadales bacterium HOT3G5 (HQ537362.1) 99 - - - - 

HM BE03 Alteromonas sp. S2542 (FJ457277.1) 99 - - - - 

HM BE04 Alteromonas sp. S2542 (FJ457277.1) 99 - - - - 

HM BE05 Pseudoalteromonas sp. AmSamW21 (GU903211.1) 99 + - - - 

HM BE06 Vibrio rotiferianus isolate AP17 (HE584775.1) 99 - - - - 

HM LI01 Nautellaitalica strain R-28753 (AM944522.1) 99 - - + NT 

HM LI02 Alteromonas sp. S2542 (FJ457277.1) 99 - - - - 

HM LI03 Pseudoalteromonadaceae bacterium S3 (HQ164448.1) 100 - - - NT 

HM LI04 Nautellaitalica strain R-28753 (AM944522.1) 99 - - - NT 

HM LI05 Alteromonas sp. S2542 (FJ457277.1) 99 - - - NT 

HM LI06 Pseudoalteromonas sp. AKA07-4 (AB571944.1) 99 - - - NT 

HM OE02 Pseudoalteromonadaceae bacterium S3 (HQ164448.1) 100 - - + NT 

HM OE03 Alteromonas sp. CF14-3 (FJ170033.1) 99 - - - - 

HM OE04 Thalassomonas sp. PaD1.04 (GQ391976.1) 98 - - - - 

HM OE07 Pseudoalteromonas sp. TB51 (JF273853.1) 99 - - - - 

HM OE08 Colwellia sp. KMD002 (EU599214.3) 98 - - - NT 

HM OE09 Pseudoalteromonadaceae bacterium S3 (HQ164448.1) 99 + - + NT 

HM SA02 Pseudoalteromonas sp. AKA07-4 (AB571944.1) 99 + + + - 

HM SA03 Pseudoalteromonadaceae bacterium S3 (HQ164448.1) 99 + + + - 

HM SA04 Pseudoalteromonas sp. NW 4327 strain NW (FR839670.1) 99 + - - NT 

HM SA05 Marinomonas communis strain LMG 2864 (DQ011528.1) 99 - - - NT 

HM SA06 Alteromonas sp. KB19 (HM583350.1) 99 - - - - 

a NCBI Genbank accession numbers are indicated in brackets; b NT indicates that the sample was not tested for its ability 

to produce TTX. The detection limit of TTX using the LC-MS method was 0.1 ng/mL. 
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Table 2. Bacterial identification and screening for polyketide synthase (PKS), non-ribosomal 

peptide synthetase (NRPS), and amidinotransferase (AMT) genes related to tetrodotoxin 

(TTX)-biosynthesis in bacterial isolates from Pleurobranchaea maculata. 

Strain Closest 16S rRNA gene BLAST match a 
Identity 

(%) 

PCR screening TTX  

Detection b PKS NRPS AMT 

PM DT05 Photobacterium kishitanii strain S-27 (JF412253.1) 99 - - - - 

PM DT08 Shewanella schlegeliana (AB081761.1) 99 - - - - 

PM DT10 Photobacterium sp. DFC2.17 isolate DFC2.17 (FR873783.1) 99 - - - - 

PM DT11 Photobacterium kishitanii strain S-27 (JF412253.1) 99 - - - NT 

PM DT12 Shewanella schlegeliana (AB081761.1) 99 + - - - 

PM EG02 Vibrio sp. YDO5 (GU586127.1) 98 - - - - 

PM EG04 Staphylococcus warneri strain Na58 (HQ831387.1) 99 - - - - 

PM EG05 Staphylococcus warneri strain Na59 (HQ831388.1) 99 - - - - 

PM EG08 Pseudoalteromonas sp. 114Z-11 (GU584139.1) 99 - - - - 

PM EG09 Pseudoalteromonas sp. BSs20138 (EU365489.1) 99 - - - - 

PM EG11 Alteromonas sp. N98(2010) (HQ188650.1) 99 - + - - 

PM EG13 Pseudoalteromonas sp. LJ1 (FJ665500.1) 99 - - - - 

PM EG14 Halomonas sp. Pper-Hx-1972 (EU123940.1) 99 + + - - 

PM EG15 Vibrio sp. S4639 (FJ457601.1) 99 - - - - 

PM EG17 Pseudoalteromonas sp. 114Z-11 (GU584139.1) 98 - - - - 

PM EG18 Pseudoalteromonas porphyrae strain HK1 (FJ205736.1) 99 + + - - 

PM GO01 Shewanella schlegeliana (AB081761.1) 99 + - - - 

PM GO04 Vibrio splendidus isolate PB1-10rrnM (EU091337.1) 99 - - - - 

PM GO05 Photobacterium kishitanii strain calba.5.9 (AY642170.1) 99 - - - - 

PM GO06 Shewanella schlegeliana (AB081761.1) 99 + - - - 

PM GO08 Photobacterium kishitanii strain calba.5.9 (AY642170.1) 99 - - - - 

PM GO09 Vibrio fischeri strain SI1E (AY292949.1) 99 - - - NT 

PM GO12 Photobacterium kishitanii strain calba.5.9 (AY642170.1) 99 - - - NT 

PM GO13 Vibrio fischeri strain SI1Ecomplete (AY292949.1) 99 - - - NT 

PM RT05 Pseudoalteromonas sp. LJ1 (FJ665500.1) 99 - + - - 

PM RT07 Alteromonas sp. N98(2010) (HQ188650.1) 99 - + - - 

PM RT10 Vibrio parahaemolyticus strain NMGB2 (JN561593.1) 99 - - - NT 

a NCBI Genbank accession numbers are indicated in brackets; b NT indicates that the sample was not tested for its ability 

to produce TTX. The detection limit of TTX using the LC-MS method was 0.1 ng/mL. 

Phylogenetic analyses revealed that 16S rRNA gene sequences grouped into seven distinct clades 

representing the orders Rhodobacterales, Oceanospirillales, Alteromonadales, Vibrionales and 

Bacillales (Figure 2). In general, H. maculosa sequences grouped separately from P. maculata 

sequences, indicating distinct microbial communities in these two animals. One exception to this was 

the P. maculata isolate PM EG11, which grouped phylogenetically with the Alteromonas sp. from  

H. maculosa, HM BE02 and HM OE03. 
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Figure 2. Maximum likelihood phylogenetic tree of 16S rRNA gene sequences of isolates 

from this study and related bacteria. The Synechocystis sp. PCC 6803 16S rRNA gene 

sequence was used as an outgroup. Hapalochlaena sp. sequences (prefix, HM) are 

indicated with blue text, P. maculata sequences (prefix, PM) are indicated with red text. 

All sequences were submitted to the GenBank database (accession numbers JN618116 to 

JN618164). Isolates identified as possessing PKS, NRPS, or AMT genes are also indicated. 
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Alteromonadales isolates grouped into three separate clades and more isolates from the 

Alteromonadales III clade tested positive for biosynthesis genes than in all other clades of isolates. 

This clade includes the previously reported TTX-producer Pseudoalteromonas tetraodonis IAM  

14160 [20]. None of the isolates from the Vibrionales or Bacillales clades possessed complex (NRPS 

or PKS) biosynthesis genes, as determined by PCR.  

It is well known that specific environmental conditions are critical for the biosynthesis of natural 

products [21,22] such as TTX [20], as are the synergistic contributions by multiple organisms that lead 

to substantial increases in metabolite production [23,24]. For these reasons, it is important that the 

resident microbial communities of TTX-containing organisms are classified and converted to stable 

laboratory cultures. Microorganisms are the proposed biogenic source of TTX, however, there have 

been very few studies describing the diversity of bacteria in hosts known to contain TTX. In the past, 

there been numerous descriptions of culturable TTX-producing bacteria isolated from TTX-containing 

organisms [5], yet none of these studies reported the entire culturable microbial community. As a result 

the bacterial diversity in these toxic marine animals has remained largely unknown. In trying to 

identify a microbial producer of TTX, it is important to understand the entire microbial diversity found 

within host organisms as it defines the environment where TTX-biosynthesis can occur. This study 

represents the first study to report the culturable bacterial populations of toxic H. maculosa and  

P. maculata. 

The isolation of bacteria from H. maculosa and P. maculata belonging to seven bacterial genera 

significantly builds upon the previously published studies investigating TTX-producing bacteria from 

toxic hosts, the majority of which only describe a single species [5]. Interestingly, two species of 

molluscs, Niothaclathrata, and Nassarius semiplicatus were reported [8,25] to possess highly diverse 

microbial communities, with five bacterial genera identified in each. Vibrio, Tenacibaculum, 

Marinomonas, Shewanella, and Aeromonas spp. were identified in N. semiplicatus, while Vibrio, 

Pseudomonas, Pasteurella, Plesiomonas, and Aeromonas spp. were found in N. clathrata. This is 

comparable to the diversity in the molluscs used in this study, and suggests that they may have greater 

bacterial diversity than other TTX-associated hosts.  

The predominance of Pseudoalteromonas in both Hapalochlaena sp. and P. maculata suggests that 

microorganisms of this genus may play a key role in the physiology of their hosts and possibly TTX 

biosynthesis. To our knowledge, this is the first description of any Pseudoalteromonas spp. from 

molluscs. Furthermore, reports of organ-associated bacteria from molluscs have only described single 

microorganism associations [26] rather than diverse communities as detailed here. 

To date, microbial TTX-producers have been reported from 23 bacterial genera [5,27–30]. Of these, 

Vibrio spp. have been identified as the TTX-producers in over half the toxic host specimens. The 

predominance of Vibrio spp. is likely due to their abundance in nature and their inherent ability to be 

cultured from the marine environment. We identified three isolates as Vibrio spp. from the two animal 

hosts. Two of these were isolated from Hapalochlaena sp. and one from and P. maculata, none of 

which tested positive for TTX (refer to Section 2.2). Unfortunately, useful phylogenetic comparisons 

were unable to be performed between isolates from this study and those from previous studies of  

TTX-associated symbionts. Of the twenty-five studies on TTX production by bacteria, only four of 

these utilized molecular taxonomic methods as part of their bacterial identification procedure. Only 



Mar. Drugs 2013, 11 2702 

 

 

two of these studies [8,31] have submitted their data to public databases, hence comparison of  

16S rRNA gene sequences from these Vibro strains was not possible. 

We have shown here that both animals host a diverse, culturable, microbial community. Studies 

regarding TTX production by bacteria, including the present study, have only focused on pure cultures. 

When TTX-producing bacteria have been identified, the strains have yielded only low amounts of  

TTX [8,9] which could not account for the levels of toxin present in the host organisms.  

2.2. Overestimation of Abundance and Diversity of TTX-Producing Bacteria 

TTX was not detected by liquid chromatography-mass spectrometry (LC-MS) in any of the  

H. maculosa organ extracts. TTX was present in the P. maculata samples with a uniform distribution 

throughout those organs tested (Table 3). The P. maculata egg-derived extracts were also found to 

contain TTX (Table 3). TTX or its analogues were not detected via LC-MS in any of the  

bacteria-derived methanol extracts tested (Tables 1 and 2). Bacteria-derived methanol extracts from  

N. semiplicatus isolates were not found to contain TTX or related analogues via LC-MS (Table 4). 

This is contrary to a previous study [8], which reported these strains as TTX producers, via 

immunoassay approaches. 

Table 3. Detection of tetrodotoxin (TTX) in whole-organ homogenates. 

Host Organism Tissue tested TTX concentration (mg/kg) 

Hapalochlaena sp. Posterior salivary gland BDL 
a
 

 Beak BDL 

Pleurobranchaea maculata Eggs 5.19 

 Digestive tract 4.23 

 Reproductive tract 3.84 

 Gonads 3.54 
a
 BDL indicates that the concentration of TTX was below the detectable limit of the instrumentation.  

The detection limit of TTX using the LC-MS method was 0.1 ng/mL (equivalent to 3 × 10
−4

 mg/kg of TTX  

in tissue). 

Table 4. Screening of Nassarius semiplicatus bacterial isolates for putative TTX-biosynthesis 

genes and a comparison of ELISA and LC-MS methods for the detection of TTX. 

Strain 
a
 

PCR screening TTX detection (ELISA) 

(ng/g) 
b
 

TTX detection 

(LC-MS) PKS NRPS AMT 

Vibrio sp. 34HU9 (EU268265) + + − 169 BDL 
c
 

Marinomonas sp. 38JIA1 (EU268259) − + − 98 BDL 

Tenacibaculum sp. 30ORI8 (EU268261) − + − 54 BDL 

a Strains are as described in Wang, X., et al., 2008 [8]; b ELISA results shown are those previously reported by  

Wang, X., et al. 2008 [8]. The detection limit of TTX using the ELISA method was 5 ng/mL (equivalent to 15 ng/g of 

TTX in tissue); c BDL indicates that the concentration of TTX was below the detectable limit of the instrumentation. The 

detection limit of TTX using the LC-MS method was 0.1 ng/mL (equivalent to 0.3 ng/g of TTX in tissue). 

The failure to identify and culture a TTX-producing microbe in this study (Tables 1 and 2) despite 

numerous reports of isolations from many other TTX-associated hosts was not completely unexpected. 
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Captivity of the P. maculata specimen for 12 days prior to dissection and bacterial isolation may have 

influenced the microbiota present in our isolation process. Additionally, P. maculatahave been shown 

to have high variability in TTX concentrations within individuals [32] suggesting an exogenous source 

of TTX. Whether this is due to environmental factors or variations in the abundance of bacterial 

producers is unknown. However, changes in environmental conditions or bacterial diversification may 

lead to loss of TTX-producing capability. Such a loss of toxin production capability has been reported 

in other toxin-producers, including the cyanobacteria Cylindrospermopsis raciborskii, which produces 

cylindrospermopsin [33]. These factors may have contributed to the lack of TTX-production by 

bacteria in this study. Furthermore, it is possible that an unculturable bacteria may be responsible for 

the production of TTX in these organisms. 

Many previous studies have focused exclusively on the detection of TTX in bacterial cells [8,11,25,30]. 

Therefore, this study did not investigate the presence of TTX in bacterial culture supernatants. Indeed, 

the presence of TTX at high levels in the supernatant would be represented by a presence of TTX in 

bacterial cells. 

In the many instances where chemical defences are conferred to progeny, the amount of toxin 

invested into the eggs or larvae is much lower than that of the adult [34]. However, in this and previous 

studies [7,35], the level of TTX detected in P. maculata eggs was comparable to that found in the 

adult. It has also been shown that P. maculata larvae possess concentrations of TTX equivalent to that 

of the adult [7]. However, a lack of TTX in the P. maculata egg-derived bacterial isolates indicates 

that vertical transmission of TTX-producing bacteria is unlikely in P. maculata [36].  

Reported TTX-producers include species from Vibrio, Pseudomonas, Alteromonas, Marinomonas, 

and Shewanella genera, and bacteria of the aforementioned genera have been previously isolated from 

H. maculosa [37]. Many studies describing the isolation of TTX-producing bacteria from host animals 

based their findings on the detection of TTX-like activity using non-specific mouse bioassays, or 

chemically by GC-MS [25,37,38]. Ions characteristic of TTX observed from GC-MS analyses have 

also been attributed to peptone, a common growth media constituent [39]. Furthermore, the majority of 

reports that identify TTX in bacteria were not supported by the structure characterization using NMR 

or MS/MS of a purified compound. This is highlighted in this study where N. semiplicatus isolates, 

which had previously tested positive for TTX using ELISA [8], were not found to produce TTX using 

more sensitive spectrometric methods. The N. semiplicatus specimen from which the bacteria were 

originally isolated had tested positive for TTX using LC-MS [8] indicating that the bacteria may not be 

the true producers of TTX in this organism. Taken together, these observations may have contributed 

to an over-estimation of the number of bacterial TTX producers in the literature.  

2.3. Mining Host-Associated Bacteria for Proposed TTX Biosynthesis Genes 

Seven isolates from Hapalochlaena sp. were found to contain at least one of the targeted 

biosynthesis genes (Table 1). Two Pseudoalteromonas isolates, HM SA2 and HM SA3, were positive 

for PKS, NRPS, and AMT genes and one Pseudoalteromonas isolate, HM OE9, contained both  

PKS and AMT genes. Furthermore, three Pseudoalteromonas isolates contained either a PKS or  

NRPS genes. 
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DNA sequencing of PKS and NRPS clone libraries of the Pseudoalteromonas isolate HM SA03 

revealed four unique PKS ketosynthase domains and six unique NRPS adenylation domains. Many of 

these domains showed little amino acid similarity (less than 60% identity) to characterized PKS and 

NRPS domains and are therefore proposed to be novel. 

A total of eight P. maculata isolates contained at least one of the targeted biosynthesis gene types 

(Table 2). These genes had similarities (70%–97%) to known sequences in the NCBI database, as 

determined by BLAST analysis. Three Shewanella isolates contained only PKS genes, while two 

Alteromonas isolates and a Pseudoalteromonas isolate contained only NRPS genes. Single Halomonas 

and Pseudoalteromonas strains contained both PKS and NRPS genes. AMT genes were not PCR 

amplified from any of the P. maculata isolates.  

All three N. semiplicatus isolates contained NRPS genes, however, only the Vibrio isolate, HU9, 

contained PKS genes and none of the N. semiplicatus isolates screened contained AMT genes. It is 

unlikely that TTX is biosynthesized via an NRPS alone [5]. Hence, it is possible that these strains are 

not true producers of TTX, but may produce a structurally similar compound that may test positive 

with antibody-based assays and provide a false positive result. 

Sequence analysis of AMT PCR products revealed significant similarity to AMT (e.g., cyrA) from 

toxic Cylindrospermopsis species [18]. This is significant because CyrA is involved in the biosynthesis 

of the potent toxin, cylindrospermopsin (Figure 1), which also incorporates an arginine as is proposed 

for TTX. An alternate biosynthetic route to TTX, which does not require an AMT, but rather, 

incorporates an intact argininehas been proposed [13,15,16]. However, feeding studies with  

guanido-
14

C labeled argininecould not confirm the origin of the guanidine moiety in TTX [16], and 

thus incorporation of intact arginine via an NRPS cannot be discounted. Gene sequences derived from 

NRPS and PKS PCR were clearly indicative of adenylation and ketosynthase domains, respectively, 

they did not show significant similarity to any characterized gene clusters and thus cannot be directly 

linked to the biosynthesis of any known toxin. Therefore, although NRPS and PKS are predicted to be 

involved in TTX biosynthesis, we cannot confirm the identification of putative TTX biosynthesis 

genes in this study. Taken together, these findings suggest that AMT are indeed useful targets for 

PCR-directed screening of microorganisms for toxic alkaloid biosynthesis gene clusters due to their 

rarity in microorganisms compared to NRPS and PKS-coding genes. 

Two isolates from Hapalochlaena sp., HM SA02 and HM SA03, derived from the octopus’ salivary 

glands, and identified as Pseudoalteromonas spp., tested positive for all three types of biosynthesis 

genes. Sequencing of HM SA03-derived clone libraries containing amplified PKS and NRPS gene 

fragments, revealed unusual genetic diversity, indicative of the potential to biosynthesize small and 

possibly novel molecules. Additionally, crude chemical extracts derived from the HM SA03 isolate 

showed moderate inhibitory effects against Staphylococcus aureus (data not shown). Though we did 

not detect TTX or its analogues in the extracts, the isolate is of interest from a small molecule 

biosynthesis standpoint. Genome sequencing in the future may allow us to ascertain whether this 

organism possesses a candidate gene cluster for the production of TTX. 
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3. Experimental Section 

3.1. Specimen Collection 

Hapalochlaena sp. was purchased from Peter Fearnside (Seafish Aquarium Life), who collected the 

specimen from Moreton Bay, Australia. This specimen was immediately transported to the laboratory 

in a plastic bag containing seawater (300 mL). The total time from specimen collection until arrival in 

the laboratory was approximately 24 h. It was housed in a 10 L aquarium filled with 4 L sterile 

seawater at 20 °C for 48 h prior to dissection. Hapalochlaena sp. was initially identified by the authors 

as H. maculosa, however, an anonymous reviewer has identified the specimen in this study as either  

H. fasciata or Hapalochlaena sp. 5. 

The P.maculataspecimen was collected from the sediment surface in 2–3 m deep water at Narrow 

Neck Beach, Auckland, New Zealand. It was placed in a plastic bag containing seawater (300 mL) and 

transported to the laboratory in a thermo insulated container. The specimen was maintained in a 19 L 

aquarium filled with 11 L of filtered seawater at 20 °C and aerated using a fish tank pump. It was fed 

twice weekly on Greenshell™ mussel (Perna canaliculus). After 12 days, P. maculata and its laid  

egg-mass were removed from the tank prior to dissection. 

3.2. Specimen Dissection 

The Hapalochlaena sp. specimen was placed at 4 °C for 2 h prior to dissection. The posterior 

salivary gland, beak and surrounding soft tissue, digestive glands, ovaries, and eggs were aseptically 

dissected from the specimen and sterilized (using 70% ethanol (v/v)). Organs were homogenized in  

10 mL sterile Milli-Q water (Millipore) using a Janke and Kunkel Ultra Turrax (IKA Laboritechnik) 

for 10 s at maximum amplitude. 

The P. maculata specimen was placed in ice for 2 h and then dissected using a sterile scalpel. The 

gonad, digestive tract, and reproductive organs were removed and homogenized. The egg mass was 

washed several times in 70% ethanol (v/v) and homogenized in 5 mL sterile seawater. A sub-sample of 

each organ and egg homogenate was frozen for subsequent TTX analysis.  

3.3. Bacterial Culturing and Genomic DNA Extraction 

To ensure adequate coverage of unique bacterial isolates, 10-fold serial dilutions of organ 

homogenates were each spread on Marine (Bacto BD), Vaatanen Nine Salts Solution (VNSS), 

Thiosulfate Citrate Bile Salts Sucrose (TCBS) (Acumedia), and Tryptic Soy Agar (Bacto BD) solid 

media and incubated at 20 °C. Morphologically unique colonies that were observed on each plate were 

further sub-cultured until pure cultures were obtained. Bacterial isolates were assigned an identifier 

using a six-character code. The first two letters indicate the host organism, either Hapalochlaena sp. 

(HM) or P. maculata (PM). The next two characters indicate the organ from which the bacteria was 

isolated and its isolate number, either salivary gland (SA), beak (BE), digestive glands (LI), ovary and 

eggs (OE), egg sac (EG), digestive tract (DT), reproductive tract (RT), or gonads (GO). Genomic DNA 

was extracted from these isolates using a xanthogenate-SDS protocol as previously described [40]. 

Approximately 100 mg of cells were resuspended in 500 µL XS buffer (1% potassium ethyl 
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xanthogenate, 800 mM ammonium acetate, 100 mM Tris-HCl pH 7.4, 20 mM EDTA, 1% sodium 

dodecylsulfate) and inverted several times to mix. The tubes were incubated for 120 min at 65 °C. The 

tubes were vortexed for 10 s and incubated for a further 60 min at 65 °C. The samples were placed on 

ice for 10 min, and then centrifuged for 10 min at 12,000 g to remove cell debris. The resulting 

supernatant was washed twice with phenol:chloroform:isoamyl alcohol (25:24:1). DNA was then 

precipitated with 2 volumes absolute ethanol and centrifuged for 30 min at 14,000 g. The resulting 

DNA pellet was washed with 70% ethanol, centrifuged for 30 min at 14,000 g and resuspended in TE 

buffer (10 mM Tris-HCl, pH 7.4; 1 mM EDTA, pH 8). Three bacterial isolates from N. semiplicatus 

were kindly provided by Rencheng Yu, Institute of Oceanology, Chinese Academy of Sciences [8]. 

3.4. Identification of Bacterial Isolates 

PCR amplification of approximately 1400 bp of the 16S rRNA gene was performed using the 

bacterial-specific primers 27fl and 1494rc [41]. Each PCR reaction mixture contained 2.5 mM MgCl2, 

0.15 mM each dNTP, 10 pmol each primer, 0.2 U of BioTaq DNA polymerase, the appropriate PCR 

buffer (Bioline) and approximately 1 ng DNA. Thermal cycling conditions were as follows: initial 

denaturation at 94 °C for 2 min, 35 cycles of denaturation at 94 °C for 30 s, annealing at 55 °C for  

30 s, extension at 72 °C for 1 min, followed by a final extension step at 72 °C for 7 min. PCR 

amplification products were electrophoresed through a 1% agarose gel, visualized by staining with  

0.5 μg·mL
−1

 ethidium bromide, and documented with a Gel Doc XR camera using Quantity One 4.6.1 

software (BioRad). PCR amplicons were precipitated for 15 min using 2 volumes ice-cold 95% ethanol 

and 1/10 volumes 3M sodium acetate. Precipitated DNA was washed with 70% ethanol and 

resuspended in Milli-Q water. 

Automated sequencing reactions were performed using approximately 50ng of purified PCR 

product and 3.2pmol of primer (26fl/1494rc) using the Prism Big Dye cycle-sequencing system and 

ABI 3730 DNA analyser sequencer (Applied Biosystem). Isolates with identical nucleotide sequences 

considered to be the same and a single representative was selected for downstream analysis. Closest 

16S rRNA gene homologies were identified using the BLAST search program (NCBI).  

3.5. PCR Screening of Bacterial Isolates for Biosynthesis Genes 

All isolates were screened for the presence of PKS genes using the degenerate primer set 

DKF/DKR (Table 5) [42], NRPS genes using the degenerate primer set MTF2/MTR2 [43] and AMT 

genes using the degenerate primer set ATFI/ATRI [44]. Expected sizes for PCR amplification products 

were 700 bp for PKS and AMT, and 1000 bp for NRPS products. PCR reactions were carried out as 

described above, except 25 pmol of each primer was used. Thermal cycling conditions were as 

followed: initial denaturation at 92 °C for 2 min, 35 cycles of denaturation at 92 °C for 10 s, annealing 

as outlined in Table 5 for 30 s, extension at 72 °C for 1 min, followed by a final extension step at  

72 °C for 7 min. Purification of PCR amplification products, DNA sequencing and gene identification 

using the BLAST server was performed as described above. 
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Table 5. Primers used for identification and screening of bacterial isolates. 

Primer  Sequence Tm
a
 AT

b
 Reference 

27fl AGAGTTTGATCCTGGCTCAG 61 55 [41] 

1494rc TACGGCTACCTTGTTACGAC 59 55 [41] 

DKF GTGCCGGTNCC(A/G)TGNG(T/C)(T/C)TC 67 55 [42] 

DKR GCGATGGA(T/C)CCNCA(A/G)CA(A/G)(C/A)G 65 55 [42] 

MTF2 GCNGG(C/T)GG(C/T)GCNTA(C/T)GTNCC 64 52 [43] 

MTR2 CCNCG(A/G/T)AT(T/C)TTNAC(T/C)TG 47 52 [43] 

ATfwd1 GT(A/C/G)TG(T/C)CC(A/T)(A/C)G(G/C)GA(T/C)GT(A/C/G)ATG 57 55 [44] 

ATrev1 AT(A/G)TCCCA(A/T)(A/G)T(C/G/T)C(A/G)CA(A/G)TG 62 55 [44] 
a 
Tm is the theoretical melting temperature of the PCR primers, given in °C; 

b 
AT is the annealing temperature 

used in PCRs containing these primers, given in °C. 

PCR screening of H. maculosa isolate HM SA03 revealed multiple NRPS and PKS genes, hence 

cloning of these genes was performed. PKS and NRPS PCR amplification products were gel-purified 

and ligated into pCR2.1-TOPOvector using a TOPO-TA Cloning kit following protocols provided by 

the manufacturer (Invitrogen) and transformed into chemically competent Escherichia coli DH5α. Ten 

clones from each clone library were randomly selected and PCR amplified using vector-directed 

primers (MpF and MpR). Purification, sequencing and analysis of PCR products were performed as 

described above. 

3.6. Phylogenetic Analysis of 16S rRNA Gene Sequences 

Partial sequences of 16S rRNA genes obtained from this study, as well as 42 reference sequences 

obtained from NCBI Genbank, were aligned using Muscle [45]. A phylogenetic tree was constructed 

from a 539 bp alignment with maximum likelihood algorithm, PhyML [46], using the general time 

reversible with gamma distribution (GTR + G) base substitution model determined using the web-based 

application, FindModel [47]. The tree was rooted with Synechocystis sp. PCC 6803 (Genbank 

accession number AY224195.1) as an outgroup. The aLRT SH-like approach was used as an estimate 

of branch reliability [48]. 

3.7. Toxin Extraction from Organ Homogenates and Bacterial Isolates 

Sub-samples (1 g, wet weight) of each organ homogenate were extracted with 3 volumes 

(approximately 3 mL) of HPLC-grade methanol (0.1% v/v acetic acid) and centrifuged (3000× g,  

10 min) to remove cell debris.  

Cultured organisms that possessed PKS genes, as determined by PCR amplification, were grown in 

1 L volumes, as were bacteria isolated from P. maculataeggs, to observe whether TTX was produced 

in culture. The cultures were grown aerobically at 20 °C for 3 days, with shaking in peptone (0.5%; 

Oxoid) in filtered seawater. This was used as a culture media as it has been shown to promote the 

production of TTX in bacteria [20]. Cultures were centrifuged (3000× g, 10 min) and the supernatant 

removed. Cell pellets were then extracted as described for organ homogenates. N. semiplicatus 

bacterial isolates were grown and chemically extracted using conditions described previously [8].  
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3.8. Analysis of Extracts by Liquid Chromatography-Mass Spectrometry  

To determine whether TTX was present in methanol extracts prepared from the organs and 

associated microbes of P. maculata, LC-MS was performed as previously described [7]. Extracts of 

Hapalochlaena sp. and its associated bacterial isolates were analysed by LC-MS using a Thermo 

Finnigan Surveyor HPLC and autosampler equipped with a Thermo Finnigan LCQ Deca XP Plus fitted 

with an electrospray source. Separation of analytes was obtained on a Phenomenex Luna 3 μm C18 

column (2.1 mm × 150 mm) at a flow rate of 100 μL·min
−1

. After an initial period of 10 min using a 

solvent gradient of 95% water (10 mM heptafluorobutyric acid), the mixture was ramped to 100% 

acetonitrile over 30 min. 

To determine if the bacterial pellet matrix resulted in any suppression or enhancement of the TTX 

signal during LC-MS analysis a spiked recovery experiment was undertaken. Samples were spiked in 

duplicate with pure TTX (Tocris Bioscience, Cat. No: 1078) to give final concentrations of 1 ng/mL,  

2 ng/mL, 10 ng/mL and 100 ng/mL. No matrix effects were measured. 

4. Conclusions 

This study has provided a better understanding of the microbial diversity in two TTX-associated 

molluscs and revealed the potential for the production of PKS and NRPS-derived natural products 

from their cultured bacteria. We set out to isolate culturable microorganisms with the aim of positively 

identifying a TTX producer. Despite our efforts we are yet to identify such an organism although a 

number of candidates have been selected for further investigation of their natural products. It is 

plausible that the TTX producing organism may not be easily cultured under standard laboratory 

conditions, as is the case with the majority of all bacteria [49]. It is also possible that we may well have 

isolated a microbe with the genetic potential to biosynthesize TTX but production was not achievable 

ex situ. Biosynthetic precedents of structurally similar compounds suggest an NRPS or PKS origin for 

TTX,however, there is no experimental evidence to support this. It is plausible thatthe highly unusual 

structure of TTX may be the product of an unusualpathway utilizing novel enzymes. Characterization 

of the culturable microbial communities of Hapalochlaena sp. and P. maculata indicated a greater than 

anticipated level of diversity. It is reasonable to presume that an unculturable, or yet-to-be cultured, 

TTX-producer exists. To this end a metagenomics-based approach to study the entire communities of 

these molluscs is in progress. This will not only extend our knowledge of the microbial community, 

but also provide us with clues as to how to culture members of the community in the laboratory, and 

aid the search for the elusive TTX producer and its biosynthetic pathway. 
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