6 research outputs found

    Couplage ablation laser et imagerie spectrale rapide pour identification et analyses de plastiques : concept, développement et validation

    Get PDF
    Laser Induced Breakdown Spectroscopy (LIBS) is an analytical technique based on the emission of a plasma arising from the laser-matter interaction. All the elements of the periodic table can be detected with a detection limit close to the ppm, regardless of the nature of sample: solid, liquid or gas. LIBS can perform elemental as well as molecular analysis, which makes it a trustworthy technique for the identification of organic materials, especially with reference to plastic waste sorting where the established techniques experience some difficulties to fulfill all the requirements of this issue. Nevertheless, the laser-induced plasma is a transient and inhomogeneous process regularly hard to master in comparison with an inductively coupled plasma. As a consequence, LIBS technique still remains marginal for the applications demanding a reliable and frequently quantitative information. This doctoral research, which falls within the framework of a partnership between the CRITT Matériaux Alsace and the Institut Lumière Matière in Lyon, proposes to examine the two issues mentioned above. A new LIBS instrument is first given. It is organized around several monitoring tools driven by a dedicated software which allowed us to considerably reduce the fluctuations of the LIBS signal coming from the different factors involved in the process of laser ablation (laser energy, sample and detection positions, etc…). The efficiency of this new LIBS instrument is then illustrated through the example of the quantification of trace elements in glass matricesLa spectroscopie de plasma induit par laser, ou LIBS (acronyme anglais de Laser Induced Breakdown Spectroscopy) est une technique d'analyse élémentaire basée sur l'émission d'un plasma issu de l'interaction laser-matière. Elle permet en principe une détection de l'ensemble des éléments du tableau périodique avec une sensibilité typiquement de l'ordre du ppm et ce sur tout type de matériaux : solides, liquides ou gazeux. Sa capacité à exploiter aussi bien le signal élémentaire que moléculaire en fait un candidat crédible à l'identification des matériaux organiques, par exemple dans le domaine du tri des déchets plastiques où les techniques d'analyses usuelles peinent à remplir toutes les contraintes liées à cette question. Cependant, le plasma induit par laser est un phénomène transitoire et correspondant à un milieu inhomogène parfois difficile à maitriser, notamment en comparaison avec un plasma à couplage inductif. En conséquence, la LIBS reste aujourd'hui marginale dans les applications où une information fiable et souvent quantitative est requise. Ce travail doctoral, fruit d'un partenariat entre le CRITT Matériaux Alsace et l'Institut Lumière Matière de Lyon dans le cadre 'un financement CIFRE, se propose d'étudier ces deux problématiques. Un nouvel instrument LIBS est tout d'abord présenté. Articulé autour de nombreux outils de contrôle pilotés par un logiciel dédié, il a permis de limiter considérablement les fluctuations du signal LIBS liées aux divers paramètres impliqués dans le processus d'ablation laser (énergie du laser, position de l'échantillon, position de la détection…). L'efficacité de cet instrument est montrée à travers une étude de quantification d'éléments en trace dans des matrices de verr

    Coupling between laser ablation and fast spectral imaging for the identification and the analysis of plastics : concept, development and validation

    No full text
    La spectroscopie de plasma induit par laser, ou LIBS (acronyme anglais de Laser Induced Breakdown Spectroscopy) est une technique d'analyse élémentaire basée sur l'émission d'un plasma issu de l'interaction laser-matière. Elle permet en principe une détection de l'ensemble des éléments du tableau périodique avec une sensibilité typiquement de l'ordre du ppm et ce sur tout type de matériaux : solides, liquides ou gazeux. Sa capacité à exploiter aussi bien le signal élémentaire que moléculaire en fait un candidat crédible à l'identification des matériaux organiques, par exemple dans le domaine du tri des déchets plastiques où les techniques d'analyses usuelles peinent à remplir toutes les contraintes liées à cette question. Cependant, le plasma induit par laser est un phénomène transitoire et correspondant à un milieu inhomogène parfois difficile à maitriser, notamment en comparaison avec un plasma à couplage inductif. En conséquence, la LIBS reste aujourd'hui marginale dans les applications où une information fiable et souvent quantitative est requise. Ce travail doctoral, fruit d'un partenariat entre le CRITT Matériaux Alsace et l'Institut Lumière Matière de Lyon dans le cadre 'un financement CIFRE, se propose d'étudier ces deux problématiques. Un nouvel instrument LIBS est tout d'abord présenté. Articulé autour de nombreux outils de contrôle pilotés par un logiciel dédié, il a permis de limiter considérablement les fluctuations du signal LIBS liées aux divers paramètres impliqués dans le processus d'ablation laser (énergie du laser, position de l'échantillon, position de la détection…). L'efficacité de cet instrument est montrée à travers une étude de quantification d'éléments en trace dans des matrices de verreLaser Induced Breakdown Spectroscopy (LIBS) is an analytical technique based on the emission of a plasma arising from the laser-matter interaction. All the elements of the periodic table can be detected with a detection limit close to the ppm, regardless of the nature of sample: solid, liquid or gas. LIBS can perform elemental as well as molecular analysis, which makes it a trustworthy technique for the identification of organic materials, especially with reference to plastic waste sorting where the established techniques experience some difficulties to fulfill all the requirements of this issue. Nevertheless, the laser-induced plasma is a transient and inhomogeneous process regularly hard to master in comparison with an inductively coupled plasma. As a consequence, LIBS technique still remains marginal for the applications demanding a reliable and frequently quantitative information. This doctoral research, which falls within the framework of a partnership between the CRITT Matériaux Alsace and the Institut Lumière Matière in Lyon, proposes to examine the two issues mentioned above. A new LIBS instrument is first given. It is organized around several monitoring tools driven by a dedicated software which allowed us to considerably reduce the fluctuations of the LIBS signal coming from the different factors involved in the process of laser ablation (laser energy, sample and detection positions, etc…). The efficiency of this new LIBS instrument is then illustrated through the example of the quantification of trace elements in glass matrice

    Classification of plastic materials by imaging laser-induced ablation plumes

    No full text
    International audienceA method of rapid classification and identification of plastic materials has been studied in this work. Such method is based on fast spectroscopic imagery of laser-induced ablation plume on plastics to be analyzed. More specifically, a classification schema has been developed first according to the nature of the CC bonds which characterize the polymer matrix. Our results show that the spatial distribution and the evolution of the molecular species in the ablation plume, such as C2 and CN, exhibit clear different behaviors for polymers without any native CC bond, with CC single bonds or with CC double bonds respectively. Therefore the morphological parameters of the populations of the molecular species extracted from the time-resolved spectroscopic images of the plumes provide efficient indicators to classify the polymers characterized by the above mentioned different kinds of CC bonds. When dealing with different polymers with the same kind of CC bond, CC single bond for instance, other indicators should be introduced to provide the further discrimination. Such indicators can be for example a specific native molecular bond other than CC bonds, CN for example, the total emission intensity of which may exhibit specific time evolution. The robustness of the developed classification schema has been then studied with respect to two of the most frequently used additives in plastics fabrication, graphite and titanium. Our results show a negligible influence of these additives in the morphology of the populations of the molecular species when such additives are mixed into the polymer matrix with the percentages usually used in plastics productions, which demonstrates the validity of the developed classification schema for plastics

    Precise alignment of the collection fiber assisted by real-time plasma imaging in laser-induced breakdown spectroscopy

    No full text
    International audienceImproving the repeatability and the reproducibility of measurement with laser-induced breakdown spectroscopy (LIBS) is one of the actual challenging issues faced by the technique to fit the requirements of precise and accurate quantitative analysis. Among the numerous factors influencing the measurement stability in short and long terms, there are shot-to-shot and day-to-day fluctuations of the morphology of the plasma. Such fluctuations are due to the high sensitivity of laser-induced plasma to experimental conditions including properties of the sample, the laser parameters as well as properties of the ambient gas. In this paper, we demonstrate that precise alignment of the optical fiber for the collection of the plasma emission with respect to the actual morphology of the plasma assisted by real-time imaging, greatly improves the stability of LIBS measurements in short as well as in long terms. The used setup is based on a plasma imaging arrangement using a CCD camera and a real-time image processing. The obtained plasma image is displayed in a 2-dimensional frame where the position of the optical fiber is beforehand calibrated. In addition, the setup provides direct sample surface monitoring, which allows a precise control of the distance between the focusing lens and the sample surface. Test runs with a set of 8 reference samples show very high determination coefficient for calibration curves (R2 = 0.9999), and a long term repeatability and reproducibility of 4.6% (relative standard deviation) over a period of 3 months without any signal normalization. The capacity of the system to automatically correct the sample surface position for a tilted or non-regular sample surface during a surface mapping measurement is also demonstrated

    Analysis of ilmenite slag using laser-induced breakdown spectroscopy

    Get PDF
    Abstract The feasibility of using laser-induced breakdown spectroscopy (LIBS) for the compositional analysis of ilmenite slag was explored. The slag was obtained from a pilot-scale ilmenite smelting furnace. The composition of major oxides TiO₂, FeO, and MgO are determined by the calibrated LIBS method. LIBS measurements are done under normal atmosphere and temperature. A Q-switched Nd:YAG laser operating at 355 nm was used to create a plasma on an ilmenite slag sample. The characteristic lines based on the NIST database of Fe, Mg, and Ti can be identified on the normalized LIBS spectra for the slag samples. The spectral range chosen for the study is 370 to 390 nm. Calibration curves were plotted using the data collected from various industrial ilmenite samples of varying compositions of TiO₂, FeO, and MgO. The univariate simple linear regression technique was used to do the analysis and the prediction accuracy was checked by the root mean square error (RMSE). To validate the application of LIBS, both qualitative and quantitative analysis is done and compared to the analytical ICP-OES results. The model predicts the magnesium content with the highest accuracy and gives good prediction for iron and titanium content. This study demonstrates the capability of using LIBS for the surface analysis of the ilmenite slag sample
    corecore