13 research outputs found

    Improving Quantitative Laboratory Analysis of Phycobiliproteins to Provide High Quality Validation Data for Ocean Color Remote Sensing Algorithm

    Get PDF
    Identification and characterization of phytoplankton communities and their physiology is a primary aim of NASA's PACE satellite mission. The concentration and composition of phytoplankton pigments modulate the spectral distribution of light emanating from the ocean, which is measured by ocean color satellites, and thus provide critical information on phytoplankton community composition and physiological parameters. One diagnostic class of pigments not routinely well-characterized is the phycobiliproteins (PBPs), and NASA has a requirement to collect and distribute high quality in situ data in support of data product validation activities for ocean color missions. Phycobiliproteins are light-harvesting proteins that are the predominant photosynthetic pigments in some classes of phytoplankton including cyanobacteria, such as Synechococcus, Trichodesmium, and Microcystis. With the advance of hyperspectral ocean color sensors such as on PACE (expected to launch in late 2022), it is essential that we implement routine analysis of PBPs that satisfies several considerations: reproducible, high extraction efficiency for a variety of environments, and Suitable for large scale analysis. Published techniques for PBP analysis vary in recommendations for: collection, extraction, disruption mode, and analysis; evidence suggests the variation in results may depend at least in part on the species and even strain(s) of interest. Experiments that tested variations in these parameters have drawn very different conclusions regarding extraction efficiency and reproducibility. Cyanobacteria are more difficult to extract than other PBP-containing algae such as cryptophytes, but can be important primary producers. We used a cryptophyte (Rhodomonas salina) and cyanobacterium (Synechococcus sp.) to compare extraction efficiencies of water samples concentrated via centrifugation to filtered samples using two different extraction buffers (phosphate and asolectin-CHAPS). Samples were analyzed on a fluorometer configured for PC and PE detection. The results have important implications for collection and storage of samples for routine analysis; some previous studies (although not all) have suggested that filtered samples have a much lower extraction efficiency than whole water samples

    Revising upper-ocean sulfur dynamics near Bermuda : new lessons from 3 years of concentration and rate measurements

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Chemistry 13 (2016): 302-313, doi:10.1071/EN15045.Oceanic biogeochemical cycling of dimethylsulfide (DMS), and its precursor dimethylsulfoniopropionate (DMSP), has gained considerable attention over the past three decades because of the potential role of DMS in climate mediation. Here we report 3 years of monthly vertical profiles of organic sulfur cycle concentrations (DMS, particulate DMSP (DMSPp) and dissolved DMSP (DMSPd)) and rates (DMSPd consumption, biological DMS consumption and DMS photolysis) from the Bermuda Atlantic Time-series Study (BATS) site taken between 2005 and 2008. Concentrations confirm the summer paradox with mixed layer DMS peaking ~90 days after peak DMSPp and ~50 days after peak DMSPp : Chl. A small decline in mixed layer DMS was observed relative to those measured during a previous study at BATS (1992–1994), potentially driven by long-term climate shifts at the site. On average, DMS cycling occurred on longer timescales than DMSPd (0.43 ± 0.35 v. 1.39 ± 0.76 day–1) with DMSPd consumption rates remaining elevated throughout the year despite significant seasonal variability in the bacterial DMSP degrader community. DMSPp was estimated to account for 4–5 % of mixed layer primary production and turned over at a significantly slower rate (~0.2 day–1). Photolysis drove DMS loss in the mixed layer during the summer, whereas biological consumption of DMS was the dominant loss process in the winter and at depth. These findings offer new insight into the underlying mechanisms driving DMS(P) cycling in the oligotrophic ocean, provide an extended dataset for future model evaluation and hypothesis testing and highlight the need for a reexamination of past modelling results and conclusions drawn from data collected with old methodologies.The authors acknowledge funding from the National Science Foundation (NSF) (OCE-0425166) and the Center for Microbial Oceanography Research and Education (CMORE) a NSF Science and Technology Center (EF-0424599)

    Effects of increased pCO2 and temperature on the North Atlantic spring bloom. III. Dimethylsulfoniopropionate

    Get PDF
    The CLAW hypothesis argues that a negative feedback mechanism involving phytoplankton- derived dimethylsulfoniopropionate (DMSP) could mitigate increasing sea surface temperatures that result from global warming. DMSP is converted to the climatically active dimethylsulfide (DMS), which is transferred to the atmosphere and photochemically oxidized to sulfate aerosols, leading to increases in planetary albedo and cooling of the Earth’s atmosphere. A shipboard incubation experiment was conducted to investigate the effects of increased temperature and pCO2 on the algal community structure of the North Atlantic spring bloom and their subsequent impact on particulate and dissolved DMSP concentrations (DMSPp and DMSPd). Under ‘greenhouse’ conditions (elevated pCO2; 690 ppm) and elevated temperature (ambient + 4°C), coccolithophorid and pelagophyte abundances were significantly higher than under control conditions (390 ppm CO2 and ambient temperature). This shift in phytoplankton community structure also resulted in an increase in DMSPp concentrations and DMSPp:chl a ratios. There were also increases in DMSP-lyase activity and biomass-normalized DMSP-lyase activity under ‘greenhouse’ conditions. Concentrations of DMSPd decreased in the ‘greenhouse’ treatment relative to the control. This decline is thought to be partly due to changes in the microzooplankton community structure and decreased grazing pressure under ‘greenhouse’ conditions. The increases in DMSPp in the high temperature and greenhouse treatments support the CLAW hypothesis; the declines in DMSPd do not

    Nitrogen uptake rates and phytoplankton composition across contrasting North Atlantic Ocean coastal regimes north and south of Cape Hatteras

    Get PDF
    Understanding nitrogen (N) uptake rates respect to nutrient availability and the biogeography of phytoplankton communities is crucial for untangling the complexities of marine ecosystems and the physical, biological, and chemical forces shaping them. In the summer of 2016, we conducted measurements of bulk microbial uptake rates for six 15N-labeled substrates: nitrate, nitrite, ammonium, urea, cyanate, and dissolve free amino acids across distinct marine provinces, including the continental shelf of the Mid-and South Atlantic Bights (MAB and SAB), the Slope Sea, and the Gulf Stream, marking the first instance of simultaneously measuring six different N uptake rates in this dynamic region. Total measured N uptake rates were lowest in the Gulf Stream followed by the SAB. Notably, the MAB exhibited significantly higher N uptake rates compared to the SAB, likely due to the excess levels of pre-existing phosphorus present in the MAB. Together, urea and nitrate uptake contributed approximately 50% of the total N uptake across the study region. Although cyanate uptake rates were consistently low, they accounted for up to 11% of the total measured N uptake at some Gulf Stream stations. Phytoplankton groups were identified based on specific pigment markers, revealing a dominance of diatoms in the shelf community, while Synechococcus, Prochlorococcus, and pico-eukaryotes dominated in oligotrophic Gulf Stream waters. The reported uptake rates in this study were mostly in agreement with previous studies conducted in coastal waters of the North Atlantic Ocean. This study suggests there are distinct regional patterns of N uptake in this physically dynamic region, correlating with nutrient availability and phytoplankton community composition. These findings contribute valuable insights into the intricate interplay of biological and chemical factors shaping N dynamics in disparate marine ecosystems

    PACE Technical Report Series, Volume 7: Ocean Color Instrument (OCI) Concept Design Studies

    Get PDF
    Extending OCI hyperspectral radiance measurements in the ultraviolet to 320 nm on the blue spectrograph enables quantitation of atmospheric total column ozone (O3) for use in ocean color atmospheric correction algorithms. The strong absorption by atmospheric ozone below 340 nm enables the quantification of total column ozone. Other applications are possible but were not investigated due to their exploratory nature and lower priority.The first step in the atmospheric correction processing, which converts top-of-the-atmosphere radiances to water-leaving radiances, is removal of the absorbance by atmospheric trace gases such as water vapor, oxygen, ozone and nitrogen dioxide. Details of the atmospheric correction process currently used by the Ocean Biology Processing Group (OBPG) and will be employed for PACE with appropriate modifications, are described by Mobley et al. [2016]. Atmospheric ozone absorbs within the visible to near-infrared spectrum between ~450 nm and 800nm and most appreciably between 530 nm and 650 nm, a spectral region critical for maintaining NASA's chlorophyll-a climate data record and for PACE algorithms planned to characterize phytoplankton community composition and other ocean color products.While satellite-based observations will likely be available during PACE's mission lifetime, the difference in acquisition time with PACE, the coarseness in their spatial resolution, and differences in viewing geometries will introduce significant levels of uncertainties in PACE ocean color data products

    Phytoplankton composition from sPACE: Requirements, opportunities, and challenges

    Get PDF
    Ocean color satellites have provided a synoptic view of global phytoplankton for over 25 years through near surface measurements of the concentration of chlorophyll a. While remote sensing of ocean color has revolutionized our understanding of phytoplankton and their role in the oceanic and freshwater ecosystems, it is important to consider both total phytoplankton biomass and changes in phytoplankton community composition in order to fully understand the dynamics of the aquatic ecosystems. With the upcoming launch of NASA\u27s Plankton, Aerosol, Clouds, ocean Ecosystem (PACE) mission, we will be entering into a new era of global hyperspectral data, and with it, increased capabilities to monitor phytoplankton diversity from space. In this paper, we analyze the needs of the user community, review existing approaches for detecting phytoplankton community composition in situ and from space, and highlight the benefits that the PACE mission will bring. Using this three-pronged approach, we highlight the challenges and gaps to be addressed by the community going forward, while offering a vision of what global phytoplankton community composition will look like through the “eyes” of PACE

    Phytoplankton optical fingerprint libraries for development of phytoplankton ocean color satellite products

    No full text
    Abstract Phytoplankton respond to physical and hydrographic forcing on time and space scales up to and including those relevant to climate change. Quantifying changes in phytoplankton communities over these scales is essential for predicting ocean food resources, occurrences of harmful algal blooms, and carbon and other elemental cycles, among other predictions. However, one of the best tools for quantifying phytoplankton communities across relevant time and space scales, ocean color sensors, is constrained by its own spectral capabilities and availability of adequately vetted and relevant optical models. To address this later shortcoming, greater than fifty strains of phytoplankton, from a range of taxonomic lineages, geographic locations, and time in culture, alone and in mixtures, were grown to exponential and/or stationary phase for determination of hyperspectral UV-VIS absorption coefficients, multi-angle and multi-spectral backscatter coefficients, volume scattering functions, particle size distributions, pigment content, and fluorescence. The aim of this publication is to share these measurements to expedite their utilization in the development of new optical models for the next generation of ocean color satellites

    Diagnostic modeling of dimethylsulfide production in coastal water west of the Antarctic Peninsula

    Get PDF
    14 pages, 10 figures, 3 tablesThe rate of gross biological dimethylsulfide (DMS) production at two coastal sites west of the Antarctic Peninsula, off Anvers Island, near Palmer Station, was estimated using a diagnostic approach that combined field measurements from 1 January 2006 through 1 March 2006 and a one-dimensional physical model of ocean mixing. The average DMS production rate in the upper water column (0–60 m) was estimated to be 3.1±0.6 nM d−1 at station B (closer to shore) and 2.7±0.6 nM d−1 at station E (further from shore). The estimated DMS replacement time was on the order of 1 d at both stations. DMS production was greater in the mixed layer than it was below the mixed layer. The average DMS production normalized to chlorophyll was 0.5±0.1 (nM d−1)/(mg m−3) at station B and 0.7±0.2 (nM d−1)/(mg m−3) at station E. When the diagnosed production rates were normalized to the observed concentrations of total dimethylsulfoniopropionate (DMSPt, the biogenic precursor of DMS), we found a remarkable similarity between our estimates at stations B and E (0.06±0.02 and 0.04±0.01 (nM DMS d−1)/(nM DMSP), respectively) and the results obtained in a previous study from a contrasting biogeochemical environment in the North Atlantic subtropical gyre (0.047±0.006 and 0.087±0.014 (nM DMS d−1)/(nM DMSP) in a cyclonic and anticyclonic eddy, respectively). We propose that gross biological DMS production normalized to DMSPt might be relatively independent of the biogeochemical environment, and place our average estimate at 0.06±0.01 (nM DMS d−1)/(nM DMSPt). The significance of this finding is that it can provide a means to use DMSPt measurements to extrapolate gross biological DMS production, which is extremely difficult to measure experimentally under realistic in situ conditions.This research was supported by the National Science Foundation (NSF) Office of Polar Programs (OPP) under Grant OPP-0083078 to P.A. Matrai. Data from the Palmer LTER data archive were supported by NSF Grant OPP-0217282. Meteorological data were supported by NSF Grants OPP-0537827, OPP-0338147, and OPP-0230028. Surface solar radiation data were provided by the NSF UV Monitoring Network, operated by Biospherical Instruments Inc. under a contract from the NSF OPP via Raytheon Polar Services Company.Peer reviewe
    corecore