77 research outputs found

    How domestication, feralization and experience-dependent plasticity affect brain size variation in Sus scrofa

    Get PDF
    Among domestic species, pigs experienced the greatest brain size reduction, but the extent and factors of this reduction remain unclear. Here, we used the brain endocast volume collected from 92 adult skulls of wild, captive, feral and domestic Sus scrofa to explore the effects of domestication, feralization and captivity over the brain size variation of this species. We found a constant brain volume increase over 24 months, while body growth slowed down from month 20. We observed an 18% brain size reduction between wild boars and pigs, disagreeing with the 30%-40% reduction previously mentioned. We did not find significant sexual differences in brain volume, refuting the theory of the attenuation of male secondary sexual characteristics through the selection for reduced male aggression. Feralization in Australia led to brain size reduction-probably as an adaptation to food scarcity and drought, refuting the reversal to wild ancestral brain size. Finally, free-born wild boars raised in captivity showed a slight increase in brain size, potentially due to a constant and high-quality food supply as well as new allospecific interactions. These results support the need to further explore the influence of diet, environment and experience on brain size evolution during animal domestication

    Relationship between foramen magnum position and locomotion in extant and extinct hominoids

    Get PDF
    International audienceFrom the Miocene Sahelanthropus tchadensis to Pleistocene Homo sapiens, hominins are characterized by a derived anterior position of the foramen magnum relative to basicranial structures. It has been previously suggested that the anterior position of the foramen magnum in hominins is related to bipedal locomotor behavior. Yet, the functional relationship between foramen magnum position and bipedal locomotion remains unclear. Recent studies, using ratios based on cranial linear measurements, have found a link between the anterior position of the foramen magnum and bipedalism in several mammalian clades: marsupials, rodents, and primates. In the present study, we compute these ratios in a sample including a more comprehensive dataset of extant hominoids and fossil hominins. First, we verify if the values of ratios can distinguish extant humans from apes. Then, we test whether extinct hominins can be distinguished from non-bipedal extant hominoids. Finally, we assess if the studied ratios are effective predictors of bipedal behavior by testing if they mainly relate to variation in foramen magnum position rather than changes in other cranial structures. Our results confirm that the ratios discriminate between extant bipeds and non-bipeds. However, the only ratio clearly discriminating between fossil hominins and other extant apes is that which only includes basicranial structures. We show that a large proportion of the interspecific variation in the other ratios relates to changes in facial, rather than basicranial, structures. In this context, we advocate the use of measurements based only on basicranial structures when assessing the relationship between foramen magnum position and bipedalism in future studies

    The mark of captivity: plastic responses in the ankle bone of a wild ungulate (Sus scrofa)

    Get PDF
    International audienceDeciphering the plastic (non-heritable) changes induced by human control over wild animals in the archaeological record is challenging. We hypothesized that changes in locomotor behaviour in a wild ungulate due to mobility control could be quantified in the bone anatomy. To test this, we experimented with the effect of mobility reduction on the skeleton of wild boar (Sus scrofa), using the calcaneus shape as a possible © 2020 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. phenotypic marker. We first assessed differences in shape variation and covariation in captive-reared and wild-caught wild boars, taking into account differences in sex, body mass, available space for movement and muscle force. This plastic signal was then contrasted with the phenotypic changes induced by selective breeding in domestic pigs. We found that mobility reduction induces a plastic response beyond the shape variation of wild boars in their natural habitat, associated with a reduction in the range of locomotor behaviours and muscle loads. This plastic signal of captivity in the calcaneus shape differs from the main changes induced by selective breeding for larger muscle and earlier development that impacted the pigs' calcaneus shape in a much greater extent than the mobility reduction during the domestication process of their wild ancestors

    In search of morphological modules: a systematic review

    Get PDF
    Morphological modularity arises in complex living beings due to a semi-independent inheritance, development, and function of body parts. Modularity helps us to understand the evolvability and plasticity of organismal form, and how morphological variation is structured during evolution and development. For this reason, delimiting morphological modules and establishing the factors involved in their origins is a lively field of inquiry in biology today. Although it is thought that modularity is pervasive in all living beings, actually we do not know how often modularity is present in different morphological systems. We also do not know whether some methodological approaches tend to reveal modular patterns more easily than others, or whether some factors are more related to the formation of modules or the integration of the whole phenotype. This systematic review seeks to answer these type of questions through an examination of research investigating morphological modularity from 1958 to present. More than 200 original research articles were gathered in order to reach a quantitative appraisal on what is studied, how it is studied, and how the results are explained. The results reveal an heterogeneous picture, where some taxa, systems, and approaches are over-studied, while others receive minor attention. Thus, this review points out various trends and gaps in the study of morphological modularity, offering a broad picture of current knowledge and where we can direct future research efforts

    Neuromandibular integration in humans and chimpanzees: implications for dental and mandibular reduction in Homo

    Get PDF
    Objectives: Although the evolution of the hominin masticatory apparatus has been linked to diet and food processing, the physical connection between neurocranium and lower jaw suggests a role of encephalization in the trend of dental and mandibular reduction. Here, the hypothesis that tooth size and mandibular robusticity are influenced by morphological changes in the neurocranium was tested. Materials and Methods: Three-dimensional landmarks, alveolar lengths, and mandibular robusticity data were recorded on a sample of chimpanzee and human skulls. The morphological integration between the neurocranium and the lower jaw was analyzed by means of Singular Warps Analysis. Redundancy Analysis was performed to understand if the pattern of neuromandibular integration affects tooth size and mandibular robusticity. Results: There is significant morphological covariation between neurocranium and lower jaw in both chimpanzees and humans. In humans, changes in the temporal fossa seem to produce alterations of the relative orientation of jaw parts, while the influence of similar neurocranial changes in chimpanzees are more localized. In both species, postcanine alveolar lengths and mandibular robusticity are associated with shape changes of the temporal fossa. Conclusions: The results of this study support the hypothesis that the neurocranium is able to affect the evolution and development of the lower jaw, although most likely through functional integration of mandible, teeth, and muscles within the masticatory apparatus. This study highlights the relative influence of structural constraints and adaptive factors in the evolution of the human skull

    Covariations of craniofacial structures in hominids

    No full text
    Ce travail de thèse porte sur l'intégration des structures craniofaciales au sein de la famille des hominidés. Au cours de l'évolution, une réduction du prognathisme et une diminution de la longueur de la face sont observées chez les taxons appartenant au rameau humaine. Cette réduction des structures faciales est associée à une base du crâne plus fléchie et à une mandibule plus gracile. L'objectif de ce travail est de définir le rôle joué par les changements basicrâniens et mandibulaires dans la mise en place de la face courte et droite des humains modernes. Dans ce contexte, les schémas d'intégration liant la face et les autres structures crâniennes (basicrâne et mandibule) ont été décrits et quantifiés dans ce mémoire. Ce travail a été effectué sur la base d'un échantillon de crânes incluant l'ensemble des genres d'hominidés actuels : les humains modernes, les chimpanzés, les gorilles et les orangs-outans. Les crânes ont été préalablement numérisés à l'aide d'un scanner médical. Les schémas d'intégration craniofaciaux ont alors été étudiés à l'aide d'outils statistiques et de méthodes d'analyses en morphométrie géométrique. Ce travail a permis de mettre en avant plusieurs mécanismes d'intégration craniofaciale, propres aux humains modernes. Ces schémas d'intégration spécifiques permettent d'expliquer en grande partie la mise en place de la face réduite des humains modernes. Ces résultats permettent donc d'éclairer les mécanismes d'évolution et de mise en place des structures faciales chez les hominidés et dans le rameau humain.This thesis dissertation is dedicated to the study of craniofacial structures within the hominid family. Throughout evolution, a reduction of facial prognathism and a diminution of the facial length are observed in the taxa which belong to the human lineage. This reduction of facial structures is associated to a more flexed cranial base and to a shorter mandible. The aim of this work is to define the role played by the basicranial and mandibular changes in the set up of the short and straight face of modern humans. In this context, the patterns of integration linking the face and the other cranial structures (basicranium and mandible) are decrypted and quantified in this thesis dissertation. This work has been done with a sample including all the extant hominid genera: modern humans, chimpanzees, gorillas, orang-utans. The skulls were first scanned using a medical scanner. Patterns of craniofacial integration were then studied using statistical tools and geometric morphometric analysis methods. This work underlined several mechanisms of craniofacial integration, unique to modern humans. These specific patterns of integration can explain an important part of the set up of modern humans reduced face. Thus, these results enlighten the evolution mechanisms and the set up of facial structures in hominids and in the human lineage

    Implications of the Relationship Between Basicranial Flexion and Facial Orientation for the Evolution of Hominid Craniofacial Structures

    No full text
    The basicranium and face have been linked through genetic, developmental, and functional relationships throughout their evolution. As a result, basicranial morphology most likely plays a major role in the evolution of facial structures. We describe the relationships between basicranial flexion and the face in Homo, Pan, and Gorilla to determine the role of cranial base angle reduction in the setup of the short and orthognathic face of Homo. We test the hypotheses that cranial base flexion plays a significant part in variation in facial orientation, length, and projection at the intraspecific level. The sample comprised 125 crania of adult specimens including 66 Homo sapiens, 32 Pan troglodytes, and 27 Gorilla gorilla. We described the cranial base and face using landmarks placed on scans of the surfaces and computed correlations between the cranial base angle and facial orientation, length, and projection. Our results support the hypotheses that cranial base flexion plays a significant part in facial orientation for Homo and Pan and in facial length for Pan. The hypothesis that basicranial flexion is related to a reduction of facial projection is not supported. The findings suggest that basicranial flexion can explain several anatomical specificities of hominins, including the reduction of prognathism and the reduction of the length of the nasopharynx. We found different patterns in the different genera, highlighting the fact that changes in the relationship between craniofacial structures may have occurred during hominid evolution.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore