1,712 research outputs found

    Students with Special Needs and Their Interaction with Peers during Play

    Get PDF
    This qualitative study was designed to document the characteristics of peer interaction in students with special needs . The qualitative nature of this study was most beneficial because while analyzing data from the interviews and observations, I had obtained thick, rich descriptive data on the behaviors of a student with special needs during play. An observational study took place in an inclusive classroom with three students with special needs, and the typically developing peers with whom they interacted with during play. These observations allowed for the collection and interpretation of the ways in which students with special needs interact with peers during play. In addition to observation, I conducted a focus group interview. This interview took place with specific professionals within the elementary school. The collection and interpretation of this interview provided differing perspectives on my research questions

    Inflatable O-ring seal would ease closing of hatch cover plate

    Get PDF
    Inflatable O-ring seal provides positive sealing means that does not require the manual exertion of a large compressive force during opening or closing of a rotary-type hatch cover plate. The O-ring is deflated during opening and closing and inflated after closure by a gas pressure source

    Computational Processes and Incompleteness

    Full text link
    We introduce a formal definition of Wolfram's notion of computational process based on cellular automata, a physics-like model of computation. There is a natural classification of these processes into decidable, intermediate and complete. It is shown that in the context of standard finite injury priority arguments one cannot establish the existence of an intermediate computational process

    The Pagoda Sequence: a Ramble through Linear Complexity, Number Walls, D0L Sequences, Finite State Automata, and Aperiodic Tilings

    Full text link
    We review the concept of the number wall as an alternative to the traditional linear complexity profile (LCP), and sketch the relationship to other topics such as linear feedback shift-register (LFSR) and context-free Lindenmayer (D0L) sequences. A remarkable ternary analogue of the Thue-Morse sequence is introduced having deficiency 2 modulo 3, and this property verified via the re-interpretation of the number wall as an aperiodic plane tiling

    A Concrete View of Rule 110 Computation

    Full text link
    Rule 110 is a cellular automaton that performs repeated simultaneous updates of an infinite row of binary values. The values are updated in the following way: 0s are changed to 1s at all positions where the value to the right is a 1, while 1s are changed to 0s at all positions where the values to the left and right are both 1. Though trivial to define, the behavior exhibited by Rule 110 is surprisingly intricate, and in (Cook, 2004) we showed that it is capable of emulating the activity of a Turing machine by encoding the Turing machine and its tape into a repeating left pattern, a central pattern, and a repeating right pattern, which Rule 110 then acts on. In this paper we provide an explicit compiler for converting a Turing machine into a Rule 110 initial state, and we present a general approach for proving that such constructions will work as intended. The simulation was originally assumed to require exponential time, but surprising results of Neary and Woods (2006) have shown that in fact, only polynomial time is required. We use the methods of Neary and Woods to exhibit a direct simulation of a Turing machine by a tag system in polynomial time

    On the boundaries of solvability and unsolvability in tag systems. Theoretical and Experimental Results

    Get PDF
    Several older and more recent results on the boundaries of solvability and unsolvability in tag systems are surveyed. Emphasis will be put on the significance of computer experiments in research on very small tag systems

    Multi-Head Finite Automata: Characterizations, Concepts and Open Problems

    Full text link
    Multi-head finite automata were introduced in (Rabin, 1964) and (Rosenberg, 1966). Since that time, a vast literature on computational and descriptional complexity issues on multi-head finite automata documenting the importance of these devices has been developed. Although multi-head finite automata are a simple concept, their computational behavior can be already very complex and leads to undecidable or even non-semi-decidable problems on these devices such as, for example, emptiness, finiteness, universality, equivalence, etc. These strong negative results trigger the study of subclasses and alternative characterizations of multi-head finite automata for a better understanding of the nature of non-recursive trade-offs and, thus, the borderline between decidable and undecidable problems. In the present paper, we tour a fragment of this literature

    Enhancing teaching and learning through dialogue: a student and staff partnership model

    Get PDF
    This paper explores a model for developing student and staff partnerships to enhance the quality of teaching and learning and situates the model in literature on student engagement. The model enables staff and students to step outside their normal roles and the traditional student-teacher relationship into a less pre-defined mode of interaction and liminal space where conversations about teaching and learning can take place. At the most transformative, this model enables academic staff to get a sense of learner perspectives and to view students as partners and collaborators while students develop insights into the perspectives of staff. The authors argue that the model represents an innovative approach to engaging students in a meaningful way in enhancing teaching and learning and has the potential to reframe the student-teacher relationship into a more collaborative one that goes beyond listening to students

    Playing With Population Protocols

    Full text link
    Population protocols have been introduced as a model of sensor networks consisting of very limited mobile agents with no control over their own movement: A collection of anonymous agents, modeled by finite automata, interact in pairs according to some rules. Predicates on the initial configurations that can be computed by such protocols have been characterized under several hypotheses. We discuss here whether and when the rules of interactions between agents can be seen as a game from game theory. We do so by discussing several basic protocols
    • …
    corecore