3,336 research outputs found

    Enzymatic formulation capable of degrading scrapie prion under mild digestion conditions

    Get PDF
    The prion agent is notoriously resistant to common proteases and conventional sterilisation procedures. The current methods known to destroy prion infectivity such as incineration, alkaline and thermal hydrolysis are harsh, destructive, environmentally polluting and potentially hazardous, thus limit their applications for decontamination of delicate medical and laboratory devices, remediation of prion contaminated environment and for processing animal by-products including specified risk materials and carcases. Therefore, an environmentally friendly, non-destructive enzymatic degradation approach is highly desirable. A feather-degrading Bacillus licheniformis N22 keratinase has been isolated which degraded scrapie prion to undetectable level of PrPSc signals as determined by Western Blot analysis. Prion infectivity was verified by ex vivo cell-based assay. An enzymatic formulation combining N22 keratinase and biosurfactant derived from Pseudomonas aeruginosa degraded PrPSc at 65°C in 10 min to undetectable level -. A time-course degradation analysis carried out at 50°C over 2 h revealed the progressive attenuation of PrPSc intensity. Test of residual infectivity by standard cell culture assay confirmed that the enzymatic formulation reduced PrPSc infectivity to undetectable levels as compared to cells challenged with untreated standard scrapie sheep prion (SSBP/1) (p-value = 0.008 at 95% confidence interval). This novel enzymatic formulation has significant potential application for prion decontamination in various environmentally friendly systems under mild treatment conditions

    Effects of drought on groundwater-fed lake areas in the Nebraska Sand Hills

    Get PDF
    Study region: The Nebraska Sand Hills (NSH) lies in the western part of Nebraska, United States. We chose the north-eastern, central, and western parts of NSH with distinct climate, topography, and hydrology. Study focus: The study assesses the response of hundreds of shallow groundwater-fed lakes to drought. Total lake area (TLA), determined by classifying Landsat satellite images from 1984 to 2018, was juxtaposed with published Palmer Drought Severity Index (PDSI) and detrended cumulative PDSI (DeCumPDSI) at monthly and annual timescales. The PDSI and DeCumPDSI were time lagged to incorporate the preceding climatic effect (groundwater time lag) and evaluated against TLA using Bayesian regression analysis. New hydrologic insight for the region: TLA in the NSH respond to the seasonal as well as long-term climatic effects moderated by topography, surface, and subsurface hydrology. A higher determination coefficient R2 and lower mean square error of TLA at annual PDSI and DeCumPDSI illustrate the effect of long-term climatic fluctuations and groundwater influence: the evaporative losses from lakes are modulated by the lake-groundwater exchange, but the groundwater recharge has a longer response time to the drought. The study provides a simple method of assessment of the climate impact that results from the satellite data, gridded climate observation, and statistics for sensitive landscape of the NSH

    Tuning the polarization states of optical spots at the nanoscale on the poincar´e sphere using a plasmonic nanoantenna

    Get PDF
    It is shown that the polarization states of optical spots at the nanoscale can be manipulated to various points on the Poincar´e sphere using a plasmonic nanoantenna. Linearly, circularly, and elliptically polarized near-field optical spots at the nanoscale are achieved with various polarization states on the Poincar´e sphere using a plasmonic nanoantenna. A novel plasmonic nanoantenna is illuminated with diffraction-limited linearly polarized light. It is demonstrated that the plasmonic resonances of perpendicular and longitudinal components of the nanoantenna and the angle of incident polarization can be tuned to obtain optical spots beyond the diffraction limit with a desired polarization and handedness

    Mechanistic insights into allosteric regulation of the A2A adenosine G protein-coupled receptor by physiological cations.

    Get PDF
    Cations play key roles in regulating G-protein-coupled receptors (GPCRs), although their mechanisms are poorly understood. Here, 19F NMR is used to delineate the effects of cations on functional states of the adenosine A2A GPCR. While Na+ reinforces an inactive ensemble and a partial-agonist stabilized state, Ca2+ and Mg2+ shift the equilibrium toward active states. Positive allosteric effects of divalent cations are more pronounced with agonist and a G-protein-derived peptide. In cell membranes, divalent cations enhance both the affinity and fraction of the high affinity agonist-bound state. Molecular dynamics simulations suggest high concentrations of divalent cations bridge specific extracellular acidic residues, bringing TM5 and TM6 together at the extracellular surface and allosterically driving open the G-protein-binding cleft as shown by rigidity-transmission allostery theory. An understanding of cation allostery should enable the design of allosteric agents and enhance our understanding of GPCR regulation in the cellular milieu

    Understanding the evolution of native pinewoods in Scotland will benefit their future management and conservation

    Get PDF
    Scots pine (Pinus sylvestris L.) is a foundation species in Scottish highland forests and a national icon. Due to heavy exploitation, the current native pinewood coverage represents a small fraction of the postglacial maximum. To reverse this decline, various schemes have been initiated to promote planting of new and expansion of old pinewoods. This includes the designation of seed zones for control of the remaining genetic resources. The zoning was based mainly on biochemical similarity among pinewoods but, by definition, neutral molecular markers do not reflect local phenotypic adaptation. Environmental variation within Scotland is substantial and it is not yet clear to what extent this has shaped patterns of adaptive differentiation among Scottish populations. Systematic, rangewide common-environment trials can provide insights into the evolution of the native pinewoods, indicating how environment has influenced phenotypic variation and how variation is maintained. Careful design of such experiments can also provide data on the history and connectivity among populations, by molecular marker analysis. Together, phenotypic and molecular datasets from such trials can provide a robust basis for refining seed transfer guidelines for Scots pine in Scotland and should form the scientific basis for conservation action on this nationally important habitat

    An interface design for a shock-tube system

    Get PDF
    A linear display of lights and a mimic diagram arrangement of switches are suggested for the proposed high pressure shock tube control panel to enable the operator to follow a safe and reliable operating procedure

    The consequences for human health of stratospheric ozone depletion in association with other environmental factors

    No full text
    Due to the implementation of the Montreal Protocol, which has limited, and is now probably reversing, the depletion of the stratospheric ozone layer, only modest increases in solar UV-B radiation at the surface of the Earth have occurred. For many fair-skinned populations, changing behaviour with regard to exposure to the sun over the past half century - more time in the sun, less clothing cover (more skin exposed), and preference for a tan - has probably contributed more to greater levels of exposure to UV-B radiation than ozone depletion. Exposure to UV-B radiation has both adverse and beneficial effects on human health. This report focuses on an assessment of the evidence regarding these outcomes that has been published since our previous report in 2010. The skin and eyes are the organs exposed to solar UV radiation. Excessive solar irradiation causes skin cancer, including cutaneous malignant melanoma and the non-melanoma skin cancers, basal cell carcinoma and squamous cell carcinoma, and contributes to the development of other rare skin cancers such as Merkel cell carcinoma. Although the incidence of melanoma continues to increase in many countries, in some locations, primarily those with strong sun protection programmes, incidence has stabilised or decreased over the past 5 years, particularly in younger age-groups. However, the incidence of non-melanoma skin cancers is still increasing in most locations. Exposure of the skin to the sun also induces systemic immune suppression that may have adverse effects on health, such as through the reactivation of latent viral infections, but also beneficial effects through suppression of autoimmune reactivity. Solar UV-B radiation damages the eyes, causing cataracts and pterygium. UV-B irradiation of the skin is the main source of vitamin D in many geographic locations. Vitamin D plays a critical role in the maintenance of calcium homeostasis in the body; severe deficiency causes the bone diseases, rickets in children and osteomalacia in adults. Although many studies have implicated vitamin D deficiency in a wide range of diseases, such as cancer and cardiovascular disease, more recent evidence is less compelling, with meta-analyses of supplementation trials failing to show a beneficial effect on the health outcomes that have been tested. It continues to be difficult to provide public health messages to guide safe exposure to the sun that are accurate, simple, and can be used by people with different skin types, in different locations, and for different times of the year or day. There is increasing interest in relating sun protection messages to the UV Index. Current sun protection strategies are outlined and assessed. Climatic factors affect the amount of UV radiation received by the skin and eyes, separately from the effect of ozone depletion. For example, cloud cover can decrease or increase the intensity of UV radiation at Earth's surface and warmer temperatures and changes in precipitation patterns may alter the amount of time people spend outdoors and their choice of clothing. The combination of changes in climate and UV radiation may affect the number of pathogenic microorganisms in surface waters, and could have an impact on food security through effects on plant and aquatic systems. It remains difficult to quantify these effects and their possible importance for human health.Prof Robyn Lucas’ participation in the Panel was supported through funding from the Australian Government’s Ozone Science Strategy. A/Prof Rachel Neale was supported by the QIMR Berghofer Institute for Medical Research. Prof Yukio Takizawa was sponsored by the Japanese Ministry of the Environment. Ms Tammy Gibbs provided support with the figures in this paper

    Molecular Genetic Influences on Normative and Problematic Alcohol Use in a Population-Based Sample of College Students

    Get PDF
    Background: Genetic factors impact alcohol use behaviors and these factors may become increasingly evident during emerging adulthood. Examination of the effects of individual variants as well as aggregate genetic variation can clarify mechanisms underlying risk. Methods: We conducted genome-wide association studies (GWAS) in an ethnically diverse sample of college students for three quantitative outcomes including typical monthly alcohol consumption, alcohol problems, and maximum number of drinks in 24 h. Heritability based on common genetic variants (h2SNP) was assessed. We also evaluated whether risk variants in aggregate were associated with alcohol use outcomes in an independent sample of young adults. Results: Two genome-wide significant markers were observed: rs11201929 in GRID1 for maximum drinks in 24 h, with supportive evidence across all ancestry groups; and rs73317305 in SAMD12 (alcohol problems), tested only in the African ancestry group. The h2SNP estimate was 0.19 (SE = 0.11) for consumption, and was non-significant for other outcomes. Genome-wide polygenic scores were significantly associated with alcohol outcomes in an independent sample. Conclusions: These results robustly identify genetic risk for alcohol use outcomes at the variant level and in aggregate. We confirm prior evidence that genetic variation in GRID1impacts alcohol use, and identify novel loci of interest for multiple alcohol outcomes in emerging adults. These findings indicate that genetic variation influencing normative and problematic alcohol use is, to some extent, convergent across ancestry groups. Studying college populations represents a promising avenue by which to obtain large, diverse samples for gene identification
    corecore