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A B S T R A C T   

Study region: The Nebraska Sand Hills (NSH) lies in the western part of Nebraska, United States. 
We chose the north-eastern, central, and western parts of NSH with distinct climate, topography, 
and hydrology. 
Study focus: The study assesses the response of hundreds of shallow groundwater-fed lakes to 
drought. Total lake area (TLA), determined by classifying Landsat satellite images from 1984 to 
2018, was juxtaposed with published Palmer Drought Severity Index (PDSI) and detrended cu-
mulative PDSI (DeCumPDSI) at monthly and annual timescales. The PDSI and DeCumPDSI were 
time lagged to incorporate the preceding climatic effect (groundwater time lag) and evaluated 
against TLA using Bayesian regression analysis. 
New hydrologic insight for the region: TLA in the NSH respond to the seasonal as well as long-term 
climatic effects moderated by topography, surface, and subsurface hydrology. A higher deter-
mination coefficient R2 and lower mean square error of TLA at annual PDSI and DeCumPDSI 
illustrate the effect of long-term climatic fluctuations and groundwater influence: the evaporative 
losses from lakes are modulated by the lake-groundwater exchange, but the groundwater 
recharge has a longer response time to the drought. The study provides a simple method of 
assessment of the climate impact that results from the satellite data, gridded climate observation, 
and statistics for sensitive landscape of the NSH.   

1. Introduction 

Drought is a natural phenomenon that has severe socioeconomic and environmental effects (Ding et al., 2011; Mo et al., 2009). A 
decrease in rainfall duration, amount, and frequency causes drought to stress all components of a hydrologic system (Peters et al., 
2006). The effects of drought are hard to characterize as drought propagates and produces responses at multiple spatial and temporal 

Abbreviations: PDSI, Palmer Drought Severity Index; CumPDSI, Cumulative Palmer Drought Severity Index; DeCumPDSI, Detrended Cumulative 
Palmer Drought Severity Index. 
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scales. For example, a hydrologic system with hydraulic connectivity to groundwater produces a different response than a system 
without the connection (Peters et al., 2006). However, the effects of drought on the hydrological system can be characterized through 
the response of water bodies (e.g., lakes). Lake properties such as surface area, water level, volume, and salinity provide valuable 
information to assess the effect of drought on surface and groundwater hydrology (Tweed et al., 2009). The change in lake surface area, 
measured through remote sensing, helps to monitor and assess the response of the hydrologic system to drought. However, studies that 
quantify the response of thousands of shallow closed groundwater-fed lakes are limited. 

Lakes are sensitive indicators of drought as they respond rapidly and integrate information about changes in environmental, 
landscape, and atmospheric conditions (Adrian et al., 2009; Harris, 1994; Mason et al., 1994; Pham et al., 2008; Williamson et al., 
2008). The change in a lake’s physical (Du et al., 2012; Li et al., 2018; Mason et al., 1994; Tang et al., 2018; Wang et al., 2018b; Yan 
and Zheng, 2015), biological (biota) (Williamson et al., 2008) or chemical (salinity) (Pham et al., 2008) characteristics help to explain 
the hydrologic response to drought. For example, Mason et al. (1994) found that the lake water level and size (surface area) are 
sensitive to low frequency climate signals (e.g. drought) but are less sensitive to high frequency climate signals (e.g. seasonal varia-
tions). Zhang et al. (2009) found that the lake responses are defined by the size. Large lakes respond to long-term climate effects but 
moderate the seasonal effects, while smaller lakes are sensitive and responsive to seasonal effects. In addition to climate, the response 
of lakes is regulated by contribution of the lake-groundwater exchange (Fig. 1), geographic regions (Adrian et al., 2009; Liao et al., 
2013; Tang et al., 2018; Yan and Zheng, 2015), lake position relative to regional groundwater flow (Smith and Townley, 2002), 
drought severity and hydraulic connectivity (Peters et al., 2006; Pham et al., 2008; Tweed et al., 2009). Lakes with hydraulic 
connection to groundwater also provide the opportunity to evaluate or monitor the groundwater level variations. However, most of the 
studies have been focused previously on areas where lake hydrology is defined by a combination of precipitation, evaporation, and 
overland flow (Fig. 1a). Lakes water budget that include substantial surface water-groundwater exchange (Fig. 1b) respond differently 
asthe influence of surface water evaporation on lake water levels is compensated partially by the groundwater inflow fluxes and are 
less studied. However, these fluxes commonly lag behind the evaporative losses because they originate from groundwater recharge 
over large surrounding areas with long travel times through the hosting aquifer. Time lag, the time a precipitation event takes to travel 
through the subsurface and effect the lake area, is often used. For example, the present volume, number, and stage of lakes were 
determined by backward time averaging of climate events (Gong et al., 2015; Langbein, 1961; Liu and Schwartz, 2012; Mason et al., 
1994). 

Previous studies have primarily focused on lake water level and salinity to characterize the response from drought (Gosselin et al., 
2000; Tweed et al., 2009). Fewer studies use lakes area to characterize the response of drought on water bodies. Lakes area, however, is 
easily quantified using remote sensing that provides opportunity to monitor lakes in remote areas with sparse or no observations. 
Remote sensing is an easily implemented method to delineate water surface area using single-band thresholding, classification, 
multi-band, and subpixel methods (Bijeesh and Narasimhamurthy, 2020; Du et al., 2012). Thresholding, the simplest method, involves 
selecting a threshold value to delineate water from single bands. However, the method suffers from errors such as mixing of water 
pixels with shadows due to overlapping of spectral signatures (Frazier and Page, 2000), along with a subjective selection of threshold 
values (Xu, 2006). The classification-based method uses all or some of the available bands to label classes with algorithms such as 
nearest neighborhood, maximum likelihood, ISO data, K-means, support vector machine, random forest, and artificial neural network 
to identify water area (Paul et al., 2018). The classification-based method usually serves as a better method than thresholding but 
suffers from a mixed pixel effect (Frazier and Page, 2000). Hybrid methods combine multiple methods to delineate and differentiate 
water areas. For example, multi-band images when combined with image color space (Jiang et al., 2012), principal component analysis 
(Balázs et al., 2018) or tasseled cap transformation (Hoan et al., 2012; Zhuang and Chen, 2018), provides better characterization of the 
water surface area. 

The objective of this study was to characterize the spatial and temporal response of hundreds of shallow groundwater-fed lakes in 
the Nebraska Sand Hills (NSH) to drought. The lakes area derived from Landsat images are juxtaposed with drought indices, and the 
responses of lakes area are assessed using Bayesian ridge regression analysis. 

Fig. 1. Conceptual model of two extreme cases for shallow lakes: (a) lakes are imbedded in impermeable substrate and fed only by precipitation and 
overland flow; (b) lakes have hydraulic connection with groundwater; groundwater flux into the lake is the dominant component of inflow to the 
lake in the absence of overland flow. 
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2. Material and methods 

2.1. Study area 

The NSH is a drought-sensitive, grass stabilized eolian landscape, located in a semi-arid climate of western Nebraska (Fig. 2). 
Drought in the NSH, like in the entire United States (U.S.) are controlled by the low-frequency sea surface temperature anomalies in the 
Pacific and Atlantic Oceans (Mo and Lettenmaier, 2018; Schubert et al., 2004). The direct and indirect influence of the surface sea 
temperature anomalies in precipitation leads to a series of recurring and long-lasting drought in the NSH. The NSH is also vulnerable to 
drought due to semi-arid climate, eolian landscape, human encroachment and climate change (Adane et al., 2019; Burbach and 
Joeckel, 2006). The NSH has temperatures ranging from -40 to 43.3 ◦C with an average annual temperature of 8.9 ◦C. The annual 
average precipitation ranges from 450 mm in the west to 690 mm in the eastern part of NSH (National Climatic Data Center, 2020). The 
annual average precipitation ranges from 450 mm in the west to 690 mm in the east (National Climatic Data Center, 2020). Because of 
its semi-arid nature, a large proportion of precipitation is lost as evapotranspiration (> 700 mm) (Winter, 1986) and the groundwater 
influx makes up the difference. The sandy soils promote high infiltration with annual recharge rates of approximately 73 ± 73 mm 
yr− 1, varying between 40 ± 85 mm yr− 1 in the western and 200 ± 85 mm yr− 1 in the south-eastern parts (Szilagyi et al., 2011). 

The combination of climate, topography, soil, and groundwater-surface water interactions resulted in a total of 4700 and 2000 km2 

of lakes and wetlands, respectively (Dappen et al., 2007). Most of the lakes are shallow with a depth less than 1 m while the lake areas 
range from 0.004–13 km2 (Gosselin et al., 2000). The majority of the lakes are smaller than 0.2 km2 (Table 1). Lake water level is lower 
than the regional groundwater level (Ong, 2010; Winter, 1986), and evapotranspiration that exceeds precipitation suggests that the 
lakes represent areas of focused groundwater discharge, typical for groundwater-fed lakes (Zlotnik et al., 2009). Given the difference in 
climate, topography, and lake density in the NSH, three study areas were selected for this research. The Western Lake Region (WLR) 
has the highest lake density of 0.035 per km2 followed by the North-Eastern Region (NER) of 0.020 per km2 and the Central Lake 
Region (CLR) 0.017 per km2 (Fig. 2). 

Geology is an integral part of the surface water and groundwater hydrology in the NSH. The dunes in NSH are composed of well- 

Fig. 2. The Ogallala group dominates the geology in the Western, Central and North-Eastern study area in the Nebraska Sand Hills (a), a cross- 
section shows geological formations present in the Nebraska Sand Hills (b) (Chen and Chen, 2004). 
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sorted, fine to medium grained sand and lie atop the Quaternary deposits of alluvial sand and silt. The dunes and layer of alluvial sand 
and silt overlie the Ogallala Group are composed of moderate to low-permeable sand, sandstone, and siltstones (Fig. 2b). The dunes 
and Quaternary deposits have the highest permeability and form an important part of the aquifer through efficient transmission of 
recharge and minimizing evapotranspiration loss (Gutentag et al., 1984; Peterson et al., 2020). The Ogallala Formation, although less 
permeable, contains most of the groundwater due to considerable thickness and extent. The aquifer gently dips eastward at 0.9–1.3 m 
per km (Gutentag et al., 1984) and is part of the High Plains Aquifer system, where saturated. The Arikaree Formation and the White 
River Group lie beneath the Ogallala Group and are also part of the High Plains aquifer, though they are finer grained, and only contain 
usable quantities of water locally in fractured or coarse-grained areas. 

2.2. Data 

Landsat satellite images from three different sensors were used to extract the total lake area (TLA) (Table 2). Throughout the 
manuscript, TLA will refer to the area of all the lakes within the study area. The surface reflectance data from the Landsat Thematic 
Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI) with a similar spectral and spatial res-
olution in the multispectral region (Table 2) were used. The surface reflectance data, hosted in Google Earth Engine (GEE), were 
corrected for atmospheric and geometric effects using the LaSRC approach (Vermote et al., 2016). In this study, we used 450 images for 
the three-study areas. The monthly and annual distribution of images (Fig. 3) shows an uneven distribution. The highest number of 
images was available for September, October, and July. Annually, 2012 had the largest number of images for NER and 2016 for CLR 
and WLR. 

Palmer drought severity index (PDSI) is calculated on the concept of water supply and demand. It uses precipitation, soil moisture 
content, potential evapotranspiration, water storage, runoff, and antecedent conditions to estimate soil moisture balance (Alley, 1984). 
The magnitude of drought is specified based on values ranging from − 10 (dry) to +10 (wet) with values less than -3 indicating 
moderate to severe drought condition. PDSI is one of the widely used drought indices and provides a robust approximation of soil 
moisture variability as compared with other metrics such as the standardized precipitation evapotranspiration index (SPEI) (Cook 
et al., 2014). The use of precipitation and temperature from antecedent conditions provides better estimates of the soil water balance 
and the effect of water stress in the hydrological system (eg., soil moisture, streamflow) (Dai et al., 2004) than the indices that only 
consider precipitation or temperature (Keyantash et al., 2002). Similarly, the effects of warming due to climate change is better 
approximated by PDSI as compared with standardized precipitation index (SPI) (Dubrovsky et al., 2009). With a large proportion of 
precipitation lost to evapotranspiration and a high contribution from groundwater, soil moisture balance is an important component, 
and PDSI, therefore, provides proper representation of the drought conditions in the NSH. 

The PDSI used in our study is calculated per-pixel (~ 4 km), with gridded meteorological data from the Parameter-elevation 
Regression on Independent Slopes Model (PRISM). The Penman-Montieth equation is used to calculate potential evapotranspiration 
while available soil water holding capacity in the top 2.5 m of the soil was derived from the STATSGO soils database. The PDSI data are 
available three times a month and were resampled for a monthly and annual series. Details on the method and data are provided in 
Abatzoglou et al. (2014). 

Table 1 
Lake size distribution in the Nebraska Sand Hills.  

Lake area (km2) Percentage 

0− 0.2 76.8 
0.2− 0.5 15.8 
0.5− 2 6.74 
>2 0.717  

Table 2 
Landsat sensors and their spatial and spectral characteristics in the multispectral region.  

Satellite Sensor Year Resolution (m) Wavelength (μm) 

Landsat 4− 5 Thematic Mapper (TM) 1984− 2011 

30 

Band 1: 0.45− 0.51 

Landsat 7 Enhanced Thematic Mapper Plus (ETM+) 2012 

Band 2: 0.52− 0.60 
Band 3: 0.63− 0.69 
Band 4: 0.75− 0.90 
Band 5: 1.55− 1.75 
Band 7: 2.09− 2.35 

Landsat 8 Operational Land Imager (OLI) 2013− 2018 

Band 1: 0.43− 0.45 
Band 2: 0.45− 0.51 
Band 3: 0.53− 0.59 
Band 4: 0.63− 0.67 
Band 5: 0.85− 0.87 
Band 6: 1.56− 1.65 
Band 7: 2.10− 2.29 
Band 8: 0.50− 0.67 
Band 9: 1.36− 1.38  
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2.3. Lake area extraction 

The Landsat images (1984–2018), hosted in GEE, were filtered for cloud cover less than 10 %, and winter months (December- 
February) to reduce the effect of cloud and snow-covered lakes. Although NSH has a higher contrast ratio between water bodies and the 
surrounding land, high suspended sediment, submerged or floating vegetation and background reflectance from shallow water areas 
causes a mixed spectral response. The collection of images was therefore transformed using the tasseled cap transformation and 
combined with original bands to capture spectral variability present in the NSH. Tasseled cap transformation uses empirical co-
efficients (Baig et al., 2014; Crist and Cicone, 1984; Huang et al., 2002) to derive components, where the first three components, 
brightness, greenness, and wetness, account for the most variation (Crist and Kauth, 1986). The wetness feature is sensitive to soil and 
plant moisture and reduces the influence of shadows and enhances water body detection and delineation (Hoan et al., 2012; Jain et al., 
2005; Zhuang and Chen, 2018). The greenness, wetness, and brightness components of tasseled cap transformation were stacked with 
original bands and a random forest classifier in GEE was used to classify the images into water and non-water areas. Training samples 
were collected from the water bodies (150) and non-water (200) areas using visual analysis. Random forest classifier, an ensemble of 
decision trees that provides higher accuracy and is widely used in processing remotely sensed imagery including water and wetland 
classification (Tian et al., 2016; Wang et al., 2018a, 2020), was used to classify the time series images. Water areas consisting of a 
limited number of pixels are mainly associated with image misclassification due to mixed pixel effects, therefore, areas with less than 
10 pixels were removed using a majority filter with eight neighborhoods, i.e., a kernel of 3 × 3 pixels. As a result of filtering, any object 
smaller than 0.81 ha (0.0081 km2) was automatically removed from the data. 

The gaps present in the lakes from Landsat ETM + sensor was filled using the nibble tool in ArcGIS Pro 2.4. The scan line corrector 
(SLC) error present in ETM + images were extracted and reclassified as NoData to define a mask raster. The nibble operation then 
grows the lake area (input cells) into the nearest NoData cells of the mask raster. The shape and area of the lakes are preserved as it only 
fills the missing pixels within the neighborhood defined in the mask raster. As the PDSI has spatial resolution of 4 km, the response of 
individual lakes was not properly differentiable, therefore, we summed the lakes area (TLA) within each study area for further analysis. 
This also averages the uncertainty associated with smaller lakes undetected and removed during the classification process. 

2.4. PDSI and total lake area time series 

Lakes in the NSH are primarily groundwater-fed and lake dynamics are a function of the current and preceding climatic conditions. 
To account for the dependence of TLA on hydrologic conditions in preceding years, a cumulative PDSI (CumPDSI) was derived (Eq.1). 

CumPDSIk =
∑k

n=1
PDSIk (1)  

where, CumPDSIk is the cumulative PDSI values by k-th time, and PDSIk is PDSI value at the k-th time and is calculated monthly, and 
annually. 

PDSI, a water-balance index when summed (CumPDSI) should have a trend with a slope of zero over the long-term. However, the 

Fig. 3. Monthly and annual Landsat image distribution in the Western, Central, and North-Eastern Lake region.  

N. Shrestha et al.                                                                                                                                                                                                      



Journal of Hydrology: Regional Studies 36 (2021) 100877

6

CumPDSI exhibited a trend, which was removed (Fig. 4) to calculate detrended PDSI (DePDSI) and detrended cumulative PDSI 
(DeCumPDSI) (Huang et al., 2011) using Eqs. 2 and 3 respectively. The trends were calculated using a simple linear regression that uses 
least squares to minimize the difference between the observed and fitted values. The slope of the regression was then used to remove 
the trend present in PDSI. A negative trend in WLR, CLR, and NER was removed by adding a value of 0.1330, 0.2078, and 0.2340 
respectively. The values inside square brackets (Eq. 2) indicate respective trend values in CLR and NER region. 

DePDSIk = PDSIk + [0.133,+0.2078, + 0.234] (2)  

where, k ranges from 1 to n. In analogy with CumPDSIk, a detrended cumulative index DeCumPDSIk was calculated using Eq.3. The PDSI 
and DeCumPDSI were aggregated for monthly and annual timescale. 

DeCumPDSIk =
∑k

n=1
DePDSIk (3)  

2.5. Total lake area and PDSI regression analysis 

The Bayesian ridge regression was used to predict the response of TLA in the NSH. The PDSI and DeCumPDSI were time lagged by t 
to incorporate effects of groundwater influence from drought. The Bayesian ridge regression uses the probability distribution of the 
independent variable and its coefficients to estimate the distribution of the dependent variable (Murphy, 2012). Assuming a Gaussian 
distribution, the response is estimated as: 

y ∼ N(μ, α− 1) (4)  

where y = {y1, y2….. yn} is the dependent variable (TLA) parametrized by mean μ =Xω and variance α− 1. X is n*m matrix of time lagged 
PDSI, or DeCumPDSI and ω is the weight. 

The Bayesian approach computes posterior distribution p(ω|y,X)αp(y|ω,X) × p(ω,X) as a product of likelihood and prior distri-
bution. The prior distribution is given by spherical Gaussian centered about zero, ω ∼ N

(
0, λ− 1I

)
The priors for α− 1 and λ− 1 are 

gamma distributions, i.e., α ∼ G(α1, α1), λ ∼ G(λ1, λ2), and α > 0, λ > 0. α, λ, and ω are estimated from the data during training process 
(Bishop, 2006). The λ also serves as a regularization parameter which is estimated from the data during the training phase, eliminates 
subjectivity and makes the algorithm more stable. The ridge regression reduces the effect of collinearity and thereby avoids high 
prediction error associated with correlated data (Murphy, 2012). Because the posterior distribution is Gaussian, its mode coincides 
with mean, and therefore maximum posterior is calculated to minimize the prediction loss. Maximization of the posterior distribution 
with respect to weights ω minimizes the sum-of-squares with the addition of the quadratic minimization parameter λ (Eq. 5). 

ω̂MAP = (XT X + λI )
− 1 XT Y (5)  

where X is the matrix of inputs and I is the identity matrix. 
The dependent variables are then solved using Eq. 6 to get the estimate of the lakes sizes. 

Ŷ = X(XT X + λI )
− 1 XT Y (6) 

To determine the number of preceding climatic events that define the TLA, a correlation and a regression analysis between the TLA 
and time lagged PDSI and DeCumPDSI were performed. The PDSI and DeCumPDSI were time lagged to thirty-six past observations, 
corresponding to the three and thirty-six years for monthly and annual data. PDSI and DeCumPDSI from the past were combined 

Fig. 4. The relation between PDSI with cumulative PDSI (CumPDSI) and detrended cumulative PDSI (DeCumPDSI). A negative trend present in 
CumPDSI is removed to calculate the DeCumPDSI. 
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sequentially and a regression analysis was evaluated using R2. The performance (R2) was plotted against the features (Fig. 5). A 
combination that produced the highest R2 and lowest MSE was selected as the final model. 

The α and λ parameters of the Bayesian regression are random numbers that follow the gamma distribution and are estimated 
during the training process. A grid search cross validation method was used to estimate the optimal α and λ values. The values [10− 3, 
10-4, 10-5, 10-6, 10-7, 10-8, 10-10, 10-12, 10-15] were used to find the optimal parameters. The results (Fig. 6) shows that the negative 
mean squared errors do not change significantly with lower hyper-parameters values (10-6). Therefore, the default values of α1=α2=
λ1= λ2 = 10-6 as suggested by MacKay (1992) were used as the Bayesian ridge regression is insensitive to hyper-parameter settings. We 
used 70 % of the data to train and 30 % to test the model using the Scikit-Learn (Pedregosa et al., 2011) package implemented in 
Python 3.7. 

Effect of irrigation on groundwater level and its subsequent effect on the TLA were analyzed using hotspot analysis of active 
irrigation well data hosted by the Conservation and Survey Division, School of Natural Resources, University of Nebraska-Lincoln, and 
the Nebraska Department of Natural Resources (Conservation and Survey Division, 2021a). Hotspot analysis, performed using ArcGIS 
Pro 2.6, shows if the underlying spatial pattern is significant or the result is from random processes (Getis and Ord, 1992; Scott and 
Janikas, 2010). It creates statistically significant spatial clusters of high or low values with z-score, p-value, and confidence level. A 
high z-score with small p-value indicate spatial clustering of high values while a low negative z-score and small p-value indicate a 
spatial clustering of low values (Scott and Janikas, 2010). In our study we used the location of irrigation wells to calculate the zones 
with higher and lower pumping rates. 

A convergence index (Conrad et al., 2015) was calculated from the digital elevation model with a resolution of 30 m to highlight the 
effect of topography on TLA response. The calculation uses aspect and finds the degree to which the surrounding cells point to the 
center cell. The convergence index with values of zero indicate a planar (valley), a negative value shows a convergent (channels), and a 
positive value indicate divergent (ridges) surface (Conrad et al., 2015). 

2.6. Accuracy assessment 

Accuracy of the extracted lakes was assessed using high spatial resolution aerial images from the National Agriculture Imagery 
Program (NAIP) as reference data. Images were selected to represent the normal, dry, and wet seasons based on the availability of NAIP 
and cloud-free Landsat images. We used three different years to represent TLA variation during normal (2004), dry (2012), and wet 
(2018) years. For each year, 100 random points were generated using a random point algorithm and labeled using visual interpretation 
in GEE. The overall accuracy, error of commission, omission, and Kappa statistics were calculated. The error of commission represents 
the percentage of pixels classified as lakes that do not belong to the lakes as per the reference NAIP data, while the error of omission is 
the percentage of the pixels that are present as lakes in the reference data, but absent in classified data. Kappa statistics show whether 
the results of the error matrix is significantly better than agreement due to chance (Stehman, 1997). 

3. Results 

3.1. Accuracy of lake area 

The lake area extracted from Landsat images, when compared with NAIP, illustrates an overall accuracy greater than 95 % for the 
normal, dry, and wet years (Table 3). The error of commission and omission were less than 5 % and 8 %, respectively, for each year. 
The Kappa statistics greater than 93 % highlights that the lake area are significantly better than chance. 

3.2. Relationship between PDSI and total lake area 

A correlation analysis shows a strong cyclic pattern in TLA with annual PDSI and DeCumPDSI. A linear decrease in correlation is 

Fig. 5. The relationship between the total lake area and sequential time lagged PDSI and DeCumPDSI at Western Lake Region a), Central Lake 
Region b), and North-Eastern Lake Region c) at monthly and annual timescale. 
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seen in monthly PDSI while the DeCumPDSI displays a weaker cyclic pattern (Fig. 7). A linear and weaker cyclic pattern in correlation 
in monthly data indicates that the climate from the previous year contributes to the current TLA. 

3.2.1. Spatial variation of total lake area 
A long-term average of classified lakes from 1984 to 2018 shows a spatial pattern in TLA variation. Since the classified image had a 

value of 1 for presence and 0 for the absence of water, an area with a consistent presence of water has a mean value closer to 1, while an 
area with a value closer to 0 indicates the intermittent presence of water. Table 4 shows the percentage of TLA fluctuation between 
1984 and 2018. NER has the highest percentage of lakes that fluctuates equal to or less than 20 % of the time while WLR shows the 
highest proportion of permanent lakes. Fig. 8 shows individual lakes differing responses to drought. Lake boundaries in the northern 
WLR (Fig. 8a) fluctuate more often than the lakes in the southern WLR (Fig. 8c). Some of the larger lakes in the NER are less variable, as 
the area is modified through human interference such as dams and irrigation. 

The spatial pattern in TLA fluctuation is due to the variability in hydraulic conductivity, flow direction and the gradient of the 
regional groundwater. Apart from the influence of the underlying groundwater condition, the existence of lakes in the NSH is strongly 
controlled by topography. The fluctuation is pronounced when the lakes are present in the convergent and divergent topography 

Fig. 6. Hyper-parameter sensitivity of α and λ in Bayesian ridge regression.  

Table 3 
Lake area accuracy in percentage for a normal (2004), dry (2012) and wet (2018) year as compared with National 
Agriculture Imagery Program images.  

Accuracy Metrics  Year   
2004 2012 2018 

Overall 97 97 98 
Commission 95 96 97 
Omission 92 94 93 
Kappa 93 95 95  

Fig. 7. Correlation between total lake area and time lagged PDSI and DeCumPDSI at Western a), Central b), and North-Eastern c) Lake Region at 
monthly and annual timescale. 
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(Fig. 9). The lakes in planar areas are permanent (Fig. 9) indicating strong influence of topography. 
The number of irrigation wells has increased dramatically in the last 80 years in the NSH. For example, irrigation wells increased 

from only a few hundred in 1940–7775 within a 10 km outside buffer of the NSH boundary in 2019 (Conservation and Survey Division, 
2021b). The presence of hotspots near NER and modified lakes provides some explanation for the varied relation. A hotspot map 
(Fig. 10) shows that the lakes in NER have a higher chance of being influenced by irrigation. Smaller hotspot zones also lie closer to 
WLR, while the majority of the NSH lies on the cold spot or not significant zone indicating little or no interference of irrigation on 
groundwater and TLA (Fig. 10). 

3.2.2. Temporal variation in total lake area 
The temporal response of lakes in the NSH reveals seasonal, abrupt, and long-term effects of drought. The scattering of TLA, 

represented in Fig. 11, shows the effect of seasonal climatic variation. The smoothened (Savitzky-Golay filter) TLA variation, 

Table 4 
Study area with percent change in total lake area (TLA) from 1984-2018 in the Western, Central, and North-Eastern lake 
region.  

% Change in TLA  Study area   
WLR CLR NER 

< 20 48.46 58.43 61.20 
20− 40 9.48 10.17 5.38 
40− 60 6.42 6.41 3.44 
> 60 35.64 24.99 29.98  

Fig. 8. Average lake area variation (1984-2018) in the Western (a, b, c), Central (d, e, f), and the North-Eastern (g, h, i) Lake region. Pixels with 
green color show the least variation while pixels with red show the highest variation. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article). 
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represented as a solid line in Fig. 11, illustrates the response of lakes to multiyear droughts. The multiyear drought of 2000–2005, for 
example, caused a considerable reduction in TLA. Similarly, an abrupt drought from May-August of 2012 drastically reduced the TLA. 
Fig. 11 also shows that the TLA fluctuation follows the Pacific Decadal Oscillation (PDO). It also highlights that the effect of PDO is not 
immediate. The TLA decreases after reductions in PDO for a few years and indicates the presence of lag in the response of lakes. This 

Fig. 9. A convergence index shows the occurrence of planar, divergent, and convergent topography in different percent of lakes area variation.  

Fig. 10. Hot Spot analysis from the active irrigation wells show areas with the significant and non-significant clusters.  
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highlights that the TLA in the NSH depends on the groundwater flux and varying responses to drought. For example, lakes in WLR and 
CLR show a longer time lag while NER indicates a shorter time lag. The sensitivity of WLR can be due to the presence of a thicker 
vadose zone that promotes longer travel times for precipitation. NER less sensitive to immediate climate effects can be due to the gentle 
topography, consistent groundwater flux, or human interference such as irrigation (Fig. 10). 

3.2.3. Lake response to drought 
A Bayesian ridge regression model shows that the variations in TLA are best explained on an annual timescale (Figs. 12b, d, f). The 

relationship between the TLA and independent variables (PDSI and DeCumPDSI) is best demonstrated by DeCumPDSI in the WLR and 
CLR. The DeCumPDSI increased the R2 and reduced the mean squared error (MSE) on the training and testing data at monthly and 
annual time series. The NER, however, showed a slightly better estimate with PDSI on monthly and annual data (Table 5). 

Lower R2 and higher MSE values at a monthly timescale (Fig. 12a, c, f) suggest that the TLA variation has higher uncertainty and 
less correlation than at a longer time scale. A lesser fitting could be related to the fact that smaller lakes (<0.8 ha) that respond rapidly 
to climatic fluctuations, removed to reduce the uncertainty, were not considered in the analysis. Similarly, seasonality in TLA may not 
be well represented due to the limited number of cloud and snow-free images. On an annual timescale, a high R2 and low MSE is 
obtained using 5–10 years of time-lagged PDSI and DeCumPDSI values at all three study areas (Fig. 5a, b, c). Maximum MSE within 
four Landsat pixels shows that the annual DeCumPDSI could be used to determine the lake response in the NSH. In general, the R2 

values increases and MSE decreases for the PDSI and DeCumPDSI when the timescale is increased from monthly to annual. This 
suggests that the TLA variation in the NSH is controlled by the longer-term effect of drought and that the response time of lakes as 
modulated by groundwater flow is in terms of many years (5–10) instead of months and days. 

4. Discussion 

The TLA classified using the random forest classifier showed the highest accuracy. The higher accuracy (>95 %) is the result of a 
combination of tasseled cap components, original bands, and higher contrast between the water and homogenous surrounding 
landscape. With a spatial resolution of 30 m, at least 9 pixels are necessary to consistently represent an object using Landsat images 
(Ozesmi and Bauer, 2002). To avoid mixed pixel effect due to high suspended sediment, submerged or floating vegetation, and 
background reflectance at lake boundaries, pixels within 3*3 filters were removed. This leads to underrepresentation of the smaller 
lakes. Similarly, a unevenly distributed and limited number of cloud-free images resulted in the inability to capture the seasonal 
variation present in the TLA. The study, therefore, has partial or limited response of spatial and temporal variation of smaller lakes. The 
results, however, show that higher resolution satellites (e.g., Sentinel-2) could be used to characterize the smaller lakes and its response 
to seasonal variation. However, many higher resolution satellites have limited temporal (re-visit frequency) and shorter periods of 
records. 

The lake hydrology in the NSH is dependent on the precipitation and groundwater fluxes as input, evapotranspiration as output, 
and little or no contribution from overland flow. The effect of precipitation is clearly seen as the TLA fluctuates in response to the 
seasonal and long-term climate changes. Although seasonal variations are not apparent, the long-term effects of climate fluctuations is 
seen in the time-series TLA and high R2 values in Bayesian regression with annual data. The results correspond with several studies 
indicating that the climate in the central U.S. is the result of inter-annual and multiyear variation of the precipitation from air masses 
originating from the Pacific Ocean, the Arctic and the Gulf of Mexico (Bryson and Hare, 1974; Kushnir et al., 2010; Schubert et al., 
2009). The sea surface temperature fluctuations cause shorter and longer oscillations of climate signals such as Quasi-Biennial 
Oscillation (QBO), El Niño-Southern Oscillation (ENSO), the Quasi-Decadal Oscillation (QDO), Atlantic Multidecadal Oscillation 
(AMO) and PDO (White et al., 2008). The PDO and AMO cause interdecadal oscillation and result in the long-term trend and decadal 
variability of drought in the central U.S. (Mo and Lettenmaier, 2018; Nigam et al., 2011; White et al., 2008). Fig. 11 illustrates that PDO 
affects the TLA in the NSH. 

Groundwater plays an important role in the existence of lakes in the NSH. With evapotranspiration exceeding precipitation, the 
deficit in water budget of lakes is fulfilled by the groundwater contribution. The high coefficient of determination and low MSE with 

Fig. 11. Calculated and smoothed total lake area variation in the Western, Central, and North-Eastern Lake Region. The vertical lines show point of 
change, and open circles represent total lake area. The lake response shows delayed effect of Pacific Decadal Oscillation (PDO). 
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time lagged annual data indicates the effect of groundwater in the lake response. The difference in the water table depth, vadose zone 
thickness, and hydraulic connectivity shows spatial and temporal patterns in TLA. The predominance of fine to coarse-grained sand 
permits high infiltration, thus leading to a shorter lag time and therefore the response time of the TLA. Our results from the WLR show a 
longer time lag than the NER and lies between 5–10 years. Besides precipitation and groundwater contribution, studies have shown the 
TLA also depends on the gradient of groundwater flow (Peters et al., 2006; Pham et al., 2008), position of lakes with respect to the local 
or regional groundwater flow (Tague et al., 2008), storage and lake bathymetry (Tweed et al., 2009) and topography. As evident in this 
study, local variation in hydraulic connectivity (Fig. 8a, d. vs Fig. 8c), topography (Fig. 9), and bathymetry results in immediate drying 
up of smaller shallow lakes and area reduction of larger or groundwater-fed lakes during drought. The results indicate that the TLA 
fluctuation can measure and monitor the groundwater level variation in the NSH. 

Some of the differences in lower correlation and low R2 between TLA and short-term climatic effects can also be attributed to the 
inherent drawbacks of PDSI. These include (i) the assumption of no runoff until the water capacity of the topsoil layer is full, while in 
the NSH, due to the high hydraulic conductivity of the sandy soil, the majority of the precipitation infiltrates and there may be little or 
no runoff, and (ii) exclusion of snow cover, snowfall, and frozen ground in PDSI calculation (Dracup, 1991), which is prevalent in 
winter months in the NSH and therefore might lead to some limitations in relation to the TLA. TLA, however, does not show significant 
variation in winter months due to low evaporation and, (iii) inability of PDSI to capture the climatic variability of a shorter temporal 
scale (less than 9-months) (Heim, 2002). Therefore, although PDSI best represents the soil moisture condition in NSH, other drought 
indices such as SPI, SPEI should be explored in future research. 

The variations in lake responses in the NSH, because of local hydraulic conductivity, regional lake position, and topographic in-
fluences, can be refined in future studies. With few monitoring wells in the NSH, future work should also evaluate the potential in using 
the lakes as monitoring “wells” to better quantify the groundwater levels in the NSH. 

5. Conclusions 

This study presents the spatial and temporal TLA variation in response to climatic changes in the NSH. The spatial and temporal 
variations are apparent in TLA in response to the seasonal and longer-term climatic effects. The response of the lakes is controlled by 
the geographic location, the local variation of topography, climate, and groundwater influence. The longer response time, as deter-
mined by the higher degree of fit and lower MSE at the annual time scale using Bayesian analysis, shows that the groundwater is crucial 
in determining the response of lakes in the NSH. Similarly, a higher degree of fit with detrended cumulative PDSI highlights the 
importance of water balance and preceding climate effect on the lakes of the NSH. 

The study, therefore, provides a simple and effective method to monitor and predict the lake response with readily available a priori 
climate data. The TLA, calculated with a limited number of cloud-free satellite images, however, may not represent the seasonal 
fluctuations in the NSH. Similarly, the response of smaller lakes that are sensitive to short-term climatic forcing may be biased due to 
the limited spatial resolution of the Landsat sensor. 
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Fig. 12. Relationship between the actual and predicted total lake area in the Western (a, b), Central (c, d), and North-Eastern (e, f) Lake Region 
using PDSI, and DeCumPDSI at monthly and annual timescale. 

Table 5 
Performance of Bayesian ridge regression using time lagged Palmer Drought Severity Index (PDSI) and DeCumPDSI at Western, Central, and North- 
Eastern Lake Region at monthly and annual timescale. Values in square brackets correspond to test data.    

Monthly Annual   

R2 MSE R2 MSE 

WLR 
PDSI 0.48, [0.48] 416, [358] 0.89, [0.46] 63, [247] 
DeCumPDSI 0.54, [0.57] 353, [315] 0.80, [0.86] 113, [53] 

CLR 
PDSI 0.41, [0.40] 132, [112] 0.61, [0.46] 50, [103] 
DeCumPDSI 0.37, [0.54] 141, [86] 0.60, [0.52] 51, [91] 

NER PDSI 0.34, [0.28] 135, [123] 0.79, [0.45] 19, [116] 
DeCumPDSI 0.21, [0.21] 162, [135] 0.77, [0.43] 20, [120]  
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