99 research outputs found

    Inhibition of sialidase activity and cellular invasion by the bacterial vaginosis pathogen Gardnerella vaginalis

    Get PDF
    Bacterial vaginosis is a genital tract infection, thought to be caused by transformation of a lactobacillus-rich flora to a dysbiotic microbiota enriched in mixed anaerobes. The most prominent of these is Gardnerella vaginalis (GV), an anaerobic pathogen that produces sialidase enzyme to cleave terminal sialic acid residues from human glycans. Notably, high sialidase activity is associated with preterm birth and low birthweight. We explored the potential of the sialidase inhibitor Zanamavir against GV whole cell sialidase activity using methyl-umbelliferyl neuraminic acid (MU-NANA) cleavage assays, with Zanamavir causing a 30% reduction in whole cell GV sialidase activity (p < 0.05). Furthermore, cellular invasion assays using HeLa cervical epithelial cells, infected with GV, demonstrated that Zanamivir elicited a 50% reduction in cell association and invasion (p < 0.05). Our data thus highlight that pharmacological sialidase inhibitors are able to modify BV-associated sialidase activity and influence host-pathogen interactions and may represent novel therapeutic adjuncts

    Ovine pedomics : the first study of the ovine foot 16S rRNA-based microbiome

    Get PDF
    We report the first study of the bacterial microbiome of ovine interdigital skin based on 16S rRNA by pyrosequencing and conventional cloning with Sanger-sequencing. Three flocks were selected, one a flock with no signs of footrot or interdigital dermatitis, a second flock with interdigital dermatitis alone and a third flock with both interdigital dermatitis and footrot. The sheep were classified as having either healthy interdigital skin (H), interdigital dermatitis (ID) or virulent footrot (VFR). The ovine interdigital skin bacterial community varied significantly by flock and clinical condition. The diversity and richness of operational taxonomic units was greater in tissue from sheep with ID than H or VFR affected sheep. Actinobacteria, Bacteriodetes, Firmicutes and Proteobacteria were the most abundant phyla comprising 25 genera. Peptostreptococcus, Corynebacterium and Staphylococcus were associated with H, ID and VFR respectively. Sequences of Dichelobacter nodosus, the causal agent of ovine footrot, were not amplified due to mismatches in the 16S rRNA universal forward primer (27F). A specific real time PCR assay was used to demonstrate the presence of D. nodosus which was detected in all samples including the flock with no signs of ID or VFR. Sheep with ID had significantly higher numbers of D. nodosus (104-109 cells/g tissue) than those with H or VFR feet

    Interactive voice response technology for symptom monitoring and as an adjunct to the treatment of chronic pain

    Get PDF
    Chronic pain is a medical condition that severely decreases the quality of life for those who struggle to cope with it. Interactive voice response (IVR) technology has the ability to track symptoms and disease progression, to investigate the relationships between symptom patterns and clinical outcomes, to assess the efficacy of ongoing treatments, and to directly serve as an adjunct to therapeutic treatment for chronic pain. While many approaches exist toward the management of chronic pain, all have their pitfalls and none work universally. Cognitive behavioral therapy (CBT) is one approach that has been shown to be fairly effective, and therapeutic interactive voice response technology provides a convenient and easy-to-use means of extending the therapeutic gains of CBT long after patients have discontinued clinical visitations. This review summarizes the advantages and disadvantages of IVR technology, provides evidence for the efficacy of the method in monitoring and managing chronic pain, and addresses potential future directions that the technology may take as a therapeutic intervention in its own right

    The effect of a curriculum-based physical activity intervention on accelerometer-assessed physical activity in schoolchildren: a non-randomised mixed methods controlled before-and-after study

    Get PDF
    Classroom-based physical activity (PA) interventions offer the opportunity to increase PA without disrupting the curriculum. We aimed to explore the feasibility and potential effectiveness of a classroom-based intervention on moderate to vigorous PA (MVPA) and total PA. The secondary aim was to assess the acceptability and sustainability of the intervention. In a mixed-methods, non-randomised, exploratory controlled before-and-after study, 152 children (10 ± 0.7 years) were recruited from five schools; two intervention (n = 72) and three control (n = 80) schools. School teachers delivered an 8-week classroom-based intervention, comprising of 10 minutes daily MVPA integrated into the curriculum. The control schools maintained their usual school routine. Mean daily MVPA (min), total PA (mean cpm), physical fitness, and health-related quality of life measurements were taken at baseline, end of intervention, and 4-weeks post-intervention (follow-up). Data were analysed using a constrained baseline longitudinal analysis model accounting for the hierarchical data structure. For the primary outcomes (MVPA and total PA) the posterior mean difference and 95% compatibility interval were derived using a semi-Bayesian approach with an explicit prior. The acceptability and sustainability of the intervention was explored via thematic content analysis of focus group discussions with teachers (n = 5) and children (n = 50). The difference in mean daily MVPA (intervention-control) was 2.8 (-12.5 to 18.0) min/day at 8 weeks and 7.0 (-8.8 to 22.8) min/day at follow-up. For total PA, the differences were -2 (-127 to 124) cpm at 8-weeks and 11 (-121 to 143) cpm at follow-up. The interval estimates indicate that meaningful mean effects (both positive and negative) as well as trivial effects are reasonably compatible with the data and design. The intervention was received positively with continuation reported by the teachers and children. Classroom-based PA could hold promise for increasing average daily MVPA, but a large cluster randomised controlled trial is required

    Competitive Interactions between Invasive Nile Tilapia and Native Fish: The Potential for Altered Trophic Exchange and Modification of Food Webs

    Get PDF
    Recent studies have highlighted both the positive and negative impacts of species invasions. Most of these studies have been conducted on either immobile invasive plants or sessile fauna found at the base of food webs. Fewer studies have examined the impacts of vagile invasive consumers on native competitors. This is an issue of some importance given the controlling influence that consumers have on lower order plants and animals. Here, we present results of laboratory experiments designed to assess the impacts of unintended aquaculture releases of the Nile tilapia (Oreochromis niloticus), in estuaries of the Gulf of Mexico, on the functionally similar redspotted sunfish (Lepomis miniatus). Laboratory choice tests showed that tilapia prefer the same structured habitat that native sunfish prefer. In subsequent interspecific competition experiments, agonistic tilapia displaced sunfish from their preferred structured habitats. When a piscivore (largemouth bass) was present in the tank with both species, the survival of sunfish decreased. Based on these findings, if left unchecked, we predict that the proliferation of tilapia (and perhaps other aggressive aquaculture fishes) will have important detrimental effects on the structure of native food webs in shallow, structured coastal habitats. While it is likely that the impacts of higher trophic level invasive competitors will vary among species, these results show that consequences of unintended releases of invasive higher order consumers can be important

    Influence of disinfectant solutions on test materials used for the determination of masticatory performance

    Get PDF
    Funda??o de Amparo ? Pesquisa do Estado de Minas Gerais (FAPEMIG)Empresa de Pesquisa Agropecu?ria de Minas Gerais (EPAMIG)Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico (CNPq)Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior (CAPES)Masticatory function can be evaluated objectively as the capacity of an individual to fragment solid food after a fixed number of chewing cycles, the so-called masticatory performance (MP). The objective of this study was to evaluate the reliability of four different test materials (Optosil, Optocal, Zetapuls, and Perfil) and five disinfection protocols by aspersion and immersion (no disinfection, 2% glutaraldehyde, 2% chlorhexidine, 5.25% sodium hypochlorite, and 70% alcohol) on the MP, determined at three moments (24 hours, 15 and 60 days) after storing the fragmented blocks. MP was evaluated by calculating X50 through the sieving technique and the Rosim-Ramler equation. The weight and microbiologic count (colony forming units, CFUs) of chewed blocks were measured to identify any variations that would make MP determination unfeasible. Differences in MP were observed among the materials (p 0.05). The time and disinfection type had no influence on MP (p > 0.05). The number of CFUs differed between the nondisinfected group and all other disinfection groups at all time points (p < 0.01). No other significant difference in CFU count between disinfection groups was observed. In conclusion, disinfection did not alter the reliability of the test materials for the MP calculation for up to 60 days

    The LUX-ZEPLIN (LZ) Experiment

    Get PDF
    We describe the design and assembly of the LUX-ZEPLIN experiment, a direct detection search for cosmic WIMP dark matter particles. The centerpiece of the experiment is a large liquid xenon time projection chamber sensitive to low energy nuclear recoils. Rejection of backgrounds is enhanced by a Xe skin veto detector and by a liquid scintillator Outer Detector loaded with gadolinium for efficient neutron capture and tagging. LZ is located in the Davis Cavern at the 4850' level of the Sanford Underground Research Facility in Lead, South Dakota, USA. We describe the major subsystems of the experiment and its key design features and requirements

    The LUX-ZEPLIN (LZ) radioactivity and cleanliness control programs

    Get PDF
    LUX-ZEPLIN (LZ) is a second-generation direct dark matter experiment with spin-independent WIMP-nucleon scattering sensitivity above 1.4×10−48cm2 for a WIMP mass of 40GeV/c2 and a 1000days exposure. LZ achieves this sensitivity through a combination of a large 5.6t fiducial volume, active inner and outer veto systems, and radio-pure construction using materials with inherently low radioactivity content. The LZ collaboration performed an extensive radioassay campaign over a period of six years to inform material selection for construction and provide an input to the experimental background model against which any possible signal excess may be evaluated. The campaign and its results are described in this paper. We present assays of dust and radon daughters depositing on the surface of components as well as cleanliness controls necessary to maintain background expectations through detector construction and assembly. Finally, examples from the campaign to highlight fixed contaminant radioassays for the LZ photomultiplier tubes, quality control and quality assurance procedures through fabrication, radon emanation measurements of major sub-systems, and bespoke detector systems to assay scintillator are presented

    A next-generation liquid xenon observatory for dark matter and neutrino physics

    Get PDF
    The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector
    corecore