361 research outputs found

    The Submillimeter Array

    Full text link
    The Submillimeter Array (SMA), a collaborative project of the Smithsonian Astrophysical Observatory (SAO) and the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA), has begun operation on Mauna Kea in Hawaii. A total of eight 6-m telescopes comprise the array, which will cover the frequency range of 180-900 GHz. All eight telescopes have been deployed and are operational. First scientific results utilizing the three receiver bands at 230, 345, and 690 GHz have been obtained and are presented in the accompanying papers.Comment: 10 pages, 4 figure

    Endocrine-disrupting alkylphenols are widespread in the blood of lobsters from southern New England and adjacent offshore areas

    Get PDF
    Author Posting. © National Shellfisheries Association , 2012. This article is posted here by permission of National Shellfisheries Association for personal use, not for redistribution. The definitive version was published in Journal of Shellfish Research 31 (2012): 563-571, doi:10.2983/035.031.0216.Endocrine-disrupting pollutants in rivers and oceans represent a poorly understood but potentially serious threat to the integrity of aquatic and coastal ecosystems. We surveyed the hemolymph of lobsters from across southern New England and adjacent offshore areas for 3 endocrine-disrupting alkylphenols. We found all 3 compounds in hemolymph from every year and almost every region sampled. Prevalence of contamination varied significantly between regions, ranging from 45% of lobsters from southern Massachusetts to 17% of lobsters from central Long Island Sound. Mean contamination levels varied significantly as a function of region, year sampled, and collection trip, and were highest overall in lobsters from western Long Island Sound and lowest in lobsters from central Long Island Sound. Surprisingly, lobsters from offshore areas were not less contaminated than lobsters from inshore areas. Contamination levels also did not vary as a function of lobster size or shell disease signs. Contaminated lobsters held in the laboratory did not retain alkylphenols, suggesting that hemolymph contamination levels represent recent, rather than long-term, exposure. Our data set is the first, to our knowledge, to survey endocrine-disrupting contaminants in a population across such a broad temporal and spatial scale. We show that alkylphenol contamination is a persistent, widespread, but environmentally heterogeneous problem in lobster populations in southern New England and adjacent offshore areas. Our work raises serious questions about the prevalence and accumulation of these endocrine-disrupting pollutants in an important fishery species.This work was supported by the National Marine Fisheries Service as the New England Lobster Research Initiative: Lobster Shell Disease under NOAA grant NA06NMF4720100 to the University of Rhode Island Fisheries Center

    Quantum projection filter for a highly nonlinear model in cavity QED

    Get PDF
    Both in classical and quantum stochastic control theory a major role is played by the filtering equation, which recursively updates the information state of the system under observation. Unfortunately, the theory is plagued by infinite-dimensionality of the information state which severely limits its practical applicability, except in a few select cases (e.g. the linear Gaussian case.) One solution proposed in classical filtering theory is that of the projection filter. In this scheme, the filter is constrained to evolve in a finite-dimensional family of densities through orthogonal projection on the tangent space with respect to the Fisher metric. Here we apply this approach to the simple but highly nonlinear quantum model of optical phase bistability of a stongly coupled two-level atom in an optical cavity. We observe near-optimal performance of the quantum projection filter, demonstrating the utility of such an approach.Comment: 19 pages, 6 figures. A version with high quality images can be found at http://minty.caltech.edu/papers.ph

    New Rotation Periods in the Open Cluster NGC 1039 (M 34), and a Derivation of its Gyrochronology Age

    Full text link
    Employing photometric rotation periods for solar-type stars in NGC 1039 [M 34], a young, nearby open cluster, we use its mass-dependent rotation period distribution to derive the cluster's age in a distance independent way, i.e., the so-called gyrochronology method. We present an analysis of 55 new rotation periods,using light curves derived from differential photometry, for solar type stars in M 34. We also exploit the results of a recently-completed, standardized, homogeneous BVIc CCD survey of the cluster in order to establish photometric cluster membership and assign B-V colours to each photometric variable. We describe a methodology for establishing the gyrochronology age for an ensemble of solar-type stars. Empirical relations between rotation period, photometric colour and stellar age (gyrochronology) are used to determine the age of M 34. Based on its position in a colour-period diagram, each M 34 member is designated as being either a solid-body rotator (interface or I-star), a differentially rotating star (convective or C-star) or an object which is in some transitory state in between the two (gap or g-star). Fitting the period and photometric colour of each I-sequence star in the cluster, we derive the cluster's mean gyrochronology age. 47/55 of the photometric variables lie along the loci of the cluster main sequence in V/B-V and V/V-I space. We are further able to confirm kinematic membership of the cluster for half of the periodic variables [21/55], employing results from an on-going radial velocity survey of the cluster. For each cluster member identified as an I-sequence object in the colour-period diagram, we derive its individual gyrochronology age, where the mean gyro age of M 34 is found to be 193 +/- 9 Myr, formally consistent (within the errors) with that derived using several distance-dependent, photometric isochrone methods (250 +/- 67 Myr).Comment: accepted for publication in Astronomy & Astrophysic

    A novel sub-seabed CO\u3csub\u3e2\u3c/sub\u3e release experiment informing monitoring and impact assessment for geological carbon storage

    Get PDF
    © 2014 The Authors. Carbon capture and storage is a mitigation strategy that can be used to aid the reduction of anthropogenic CO2 emissions. This process aims to capture CO2 from large point-source emitters and transport it to a long-term storage site. For much of Europe, these deep storage sites are anticipated to be sited below the sea bed on continental shelves. A key operational requirement is an understanding of best practice of monitoring for potential leakage and of the environmental impact that could result from a diffusive leak from a storage complex. Here we describe a controlled CO2 release experiment beneath the seabed, which overcomes the limitations of laboratory simulations and natural analogues. The complex processes involved in setting up the experimental facility and ensuring its successful operation are discussed, including site selection, permissions, communications and facility construction. The experimental design and observational strategy are reviewed with respect to scientific outcomes along with lessons learnt in order to facilitate any similar future

    Passing the Panda Standard: A TAD Off the Mark?

    Get PDF
    Tilapia, a tropical freshwater fish native to Africa, is an increasingly important global food commodity. The World Wide Fund for Nature (WWF), a major environmental nongovernmental organization, has established stakeholder dialogues to formulate farm certification standards that promote ‘‘responsible’’ culture practices. As a preface to its ‘‘tilapia aquaculture dialogue,’’ the WWF for Nature commissioned a review of potential certification issues, later published as a peer-reviewed article. This article contends that both the review and the draft certification standards subsequently developed fail to adequately integrate critical factors governing the relative sustainability of tilapia production and thereby miss more significant issues related to resource-use efficiency and the appropriation of ecosystem space and services. This raises a distinct possibility that subsequent certification will promote intensive systems of tilapia production that are far less ecologically benign than existing widely practiced semiintensive alternatives. Given the likely future significance of this emergent standard, it is contended that a more holistic approach to certification is essential

    Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems

    Full text link
    Quantum simulators are controllable quantum systems that can reproduce the dynamics of the system of interest, which are unfeasible for classical computers. Recent developments in quantum technology enable the precise control of individual quantum particles as required for studying complex quantum systems. Particularly, quantum simulators capable of simulating frustrated Heisenberg spin systems provide platforms for understanding exotic matter such as high-temperature superconductors. Here we report the analog quantum simulation of the ground-state wavefunction to probe arbitrary Heisenberg-type interactions among four spin-1/2 particles . Depending on the interaction strength, frustration within the system emerges such that the ground state evolves from a localized to a resonating valence-bond state. This spin-1/2 tetramer is created using the polarization states of four photons. The single-particle addressability and tunable measurement-induced interactions provide us insights into entanglement dynamics among individual particles. We directly extract ground-state energies and pair-wise quantum correlations to observe the monogamy of entanglement

    Interdisciplinary Critique of Sipuleucel-T as Immunotherapy in Castration-Resistant Prostate Cancer

    Get PDF
    Sipuleucel-T was approved by the US Food and Drug Administration on April 29, 2010, as an immunotherapy for late-stage prostate cancer. To manufacture sipuleucel-T, mononuclear cells harvested from the patient are incubated with a recombinant prostatic acid phosphatase (PAP) antigen and reinfused. The manufacturer proposes that antigen-presenting cells exogenously activated by PAP induce endogenous T-cells to attack PAP-bearing prostate cancer cells. However, the lack of demonstrable tumor responses has prompted calls for scrutiny of the design of the trials in which sipuleucel-T demonstrated a 4-month survival benefit. Previously unpublished data from the sipuleucel-T trials show worse overall survival in older vs younger patients in the placebo groups, which have not been shown previously to be prognostic for survival in castration-resistant prostate cancer patients receiving chemotherapy. Because two-thirds of the cells harvested from placebo patients, but not from the sipuleucel-T arm, were frozen and not reinfused, a detrimental effect of this large repeated cell loss provides a potential alternative explanation for the survival “benefit.” Patient safety depends on adequately addressing this alternative explanation for the trial results
    corecore