858 research outputs found
Enthalpies of formation of lanthanide oxyapatite phases
A family of lanthanide silicates adopts an oxyapatite-like structure with structural formula Ln9.33∎0.67(SiO4)6O2 (Ln 4 La, Sm, Nd, Gd, ∎ = vacancy). The enthalpies of solution, DHS, for these materials and their corresponding binary oxides were determined by high-temperature oxide melt solution calorimetry using molten 2PbO·B2O3 at 1078 K. These data were used to complete thermodynamic cycles to calculate
enthalpies of formation from the oxides, ΔHs f-oxides (kJ/mol): La9.33∎0.67(SiO4)6O2 = −776.3 ± 17.9, Nd9.33∎0.67(SiO4)6O2 = −760.4 ± 31.9, Sm9.33∎0.67(SiO4)6O2 = −590.3 ± 18.6, and Gd9.33∎0.67(SiO4)6O2 = −446.9 ± 21.9. Reference data were used to calculate the standard enthalpies of formation from the elements, ΔH0 f (kJ/mol): La9.33∎0.67(SiO4)6O2 = −14611.0 ± 19.4, Nd9.33∎0.67(SiO4)6O2 = −14661.5 ± 32.2, Sm9.33∎0.67(SiO4)6O2 = −14561.7 ± 20.8, and Gd9.33∎0.67(SiO4)6O2 = −14402.7 ± 28.2. The formation enthalpies become more endothermic as the ionic radius of the lanthanide ion decreases
Grain Growth-Controlled Giant Permittivity in Soft Chemistry CaCu3Ti4O12 Ceramics
We report a dielectric constant of up to 5.4105 at room temperature and 1 kHz for CaCu3Ti4O12 (CCTO) ceramics,
derived from multiphase powders (coprecipitation products),
made by a ‘‘chimie douce’’ (coprecipitation) method, and then sintered in air. The sintered products are pure-phase CCTO ceramics. The high dielectric constant is achieved by tuning the size of grains and the thickness of grain boundaries. The grain growth is controlled by varying the concentration of excess CuO in the initial powder (calcined coprecipitation products) between 1 and 3.1 wt%. The dielectric constant of pure CCTO ceramics increases with the initial CuO concentration, reaching its maximum at 2.4 wt% of CuO. A further increase of excess CuO in powders results in a permittivity decrease, accompanied by the formation of CuO as a separate phase in the sintered products. The unusual grain growth behavior is attributed to a eutectic
reaction between CuO and TiO2 present in the initial powder
Thermochemistry of a New Class of Materials Containing Dinitrogen Pairs in an Oxide Matrix
International audienceA series of N 2 -containing perovskite phases was prepared in the La-(Ba)-Ti-O system in order to study the dinitrogen retention phenomenon from a thermochemical viewpoint. High-temperature oxide melt solution calorimetry was undertaken to determine the energetics of the corresponding startingoxynitrides, intermediate phases, and oxides. Calorimetric results show that nitrogen is weakly bound within the oxide matrix and most of the enthalpy of oxidation of the intermediate phase is devoted to its structure change between the starting perovskite structure and the formation of a layered-perovskiteLa2Ti2O7 oxide
Steam-Induced Coarsening of Single-Unit-Cell MFI Zeolite Nanosheets and Its Effect on External Surface Brønsted Acid Catalysis.
Commonly used methods to assess crystallinity, micro-/mesoporosity, Brønsted acid site density and distribution (in micro- vs. mesopores), and catalytic activity suggest nearly invariant structure and function for aluminosilicate zeolite MFI two-dimensional nanosheets before and after superheated steam treatment. Yet, pronounced reaction rate decrease for benzyl alcohol alkylation with mesitylene, a reaction that cannot take place in the zeolite micropores, is observed. Transmission electron microscopy images reveal pronounced changes in nanosheet thickness, aspect ratio and roughness indicating that nanosheet coarsening and the associated changes in the external (mesoporous) surface structure are responsible for the changes in the external surface catalytic activity. Superheated steam treatment of hierarchical zeolites can be used to alter nanosheet morphology and regulate external surface catalytic activity while preserving micro- and mesoporosity, and micropore reaction rates
Radiation effects in glasses used for immobilization of high-level waste and plutonium disposition
This paper is a comprehensive review of the state-of-knowledge in the field of radiation effects in glasses that are to be used for the immobilization of high-level nuclear waste and plutonium disposition. The current status and issues in the area of radiation damage processes, defect generation, microstructure development, theoretical methods and experimental methods ase reviewed. Questions of fundamental and technological interest that offer opportunities for research are identified
Ni-substituted sites and the effect on Cu electron spin dynamics of YBa2Cu{3-x}NixO{7-\delta}
We report Cu nuclear quadrupole resonance experiment on magnetic impurity
Ni-substituted YBaCuNiO. The distribution of
Ni-substituted sites and its effect on the Cu electron spin dynamics are
investigated. Two samples with the same Ni concentration =0.10 and nearly
the same oxygen content but different 's were prepared: One is an
as-synthesized sample (7-=6.93) in air (), and the
other is a quenched one (7-=6.92) in a reduced oxygen atmosphere
(). The plane-site Cu(2) nuclear spin-lattice
relaxation for the quenched sample was faster than that for the as-synthesized
sample, in contrast to the Cu(1) relaxation that was faster for the
as-synthesized sample. This indicates that the density of plane-site Ni(2) is
higher in the quenched sample, contrary to the chain-site Ni(1) density which
is lower in the quenched sample. From the analysis in terms of the Ni-induced
nuclear spin-lattice relaxation, we suggest that the primary origin of
suppression of is associated with nonmagnetic depairing effect of the
plane-site Ni(2).Comment: 7 pages, 5 figure
Aggregation-induced growth and transformation of β-FeOOH nanorods to micron-sized α-Fe<sub>2</sub>O<sub>3</sub> spindles
Impact of prolonged heating on the color and crystallinity of bone
Duration of an anthropogenic fire event is one aspect of fire use and maintenance that is linked to combustion feature function but has low archaeological visibility. In this study, we describe the transformations to fresh, modern cortical bone with prolonged exposure to heat in order to evaluate the utility of archaeological bone for the recognition of long duration thermal alteration. Cores of bovid cortical bone were heated exposed to air at 300, 550, and 750 °C in a sequence of experimental trials in a Nabertherm muffle furnace for periods of 10 minutes, 9 hours, and 48 hours, plus an extensive cooling period on heat retaining sediments (gravel or gravel compacted with fine quartz sand) to mirror the smoldering and extinguishing of actualistic fires. After heating, bone cores were analyzed with a color tool, Fourier-transform infrared spectroscopy, and X-ray diffraction to evaluate changes in structure, composition, and crystallinity of bioapatite as a function of different temperature thresholds and time. Results indicate that prolonged heating in air induces specific structural and chemical changes in bone compared to shorter duration burned counterparts. Coloration changes also demonstrate that white coloration, a primary characteristic utilized by zooarchaeologists to record information about burning intensity, is not an exclusive indicator of calcination at moderate to high temperatures but may also result from long duration exposures at low temperatures
- …
