188 research outputs found

    Silver and Gold Nanoparticles for Antimicrobial Purposes against Multi-Drug Resistance Bacteria

    Get PDF
    Several pieces of research have been done on transition metal nanoparticles and their nanocomplexes as research on their physical and chemical properties and their relationship to biological features are of great importance. Among all their biological properties, the antibacterial and antimicrobial are especially important due to their high use for human needs. In this article, we will discuss the different synthesis and modification methods of silver (Ag) and gold (Au) nanoparticles and their physicochemical properties. We will also review some state-of-art studies and find the best relationship between the nanoparticles’ physicochemical properties and potential antimicrobial activity. The possible antimicrobial mechanism of these types of nanoparticles will be discussed in-depth as well

    Bioresorbable Composite Polymeric Materials for Tissue Engineering Applications

    Get PDF
    This review covers the development of bioresorbable polymeric composites for applications in tissue engineering. Various commercially available bioresobable polymers are described, with emphasis on recent bioresorbable composites based on natural and synthetic polymers. Bioresorbable polymers contain hydrolyzable bonds, which are subjected to chemical degradation via either reactive hydrolysis or enzyme-catalyzed active hydrolysis. For synthetic polymers, chemical hydrolysis is the most important mode of degradation. The degradation rate can be controlled by varying the molecular weight and crystallinity. Examples of bioresorbable polymers are: polyurethane, poly(D,L)lactide, poly(lactic-co-glycolic) acid, poly(α-hydroxy acids), cross-linked polyester hydrogels, poly(orthoesters), polyanhydrides and polyethylene glycol

    Stimulus-Responsive Polymeric Nanogels As Smart Drug Delivery Systems

    Get PDF
    Nanogels are three-dimensional nanoscale networks formed by physically or chemically cross-linking polymers. Nanogels have been explored as drug delivery systems due to their advantageous properties, such as biocompatibility, high stability, tunable particle size, drug loading capacity, and possible modification of the surface for active targeting by attaching ligands that recognize cognate receptors on the target cells or tissues. Nanogels can be designed to be stimulus responsive, and react to internal or external stimuli such as pH, temperature, light and redox, thus resulting in the controlled release of loaded drugs. This “smart” targeting ability prevents drug accumulation in non-target tissues and minimizes the side effects of the drug. This review aims to provide an introduction to nanogels, their preparation methods, and to discuss the design of various stimulus-responsive nanogels that are able to provide controlled drug release in response to particular stimuli

    Recent Advancements in Aptamer-bioconjugates: Sharpening Stones for Breast and Prostate Cancers Targeting

    Get PDF
    Breast and prostate cancers are common types of cancers with various strategies, such as chemotherapy and radiotherapy, for their therapy. Since these methods have undesired side effects and poor target affinity, neoteric strategies—known as aptamer-based smart drug delivery systems (SDDSs)—have been developed in recent years to overcome the obstacles of current treatment, and investigated for a clinical trial. The high affinity and versatility of aptamers for binding to the corresponding targets make them highly noticeable agents in the drug delivery domains. In addition to their exceptional benefits, aptamers are able to overcome tumor resistance because of their high selectivity and low toxicity. Furthermore, aptamers can conjugate with various drugs, nanoparticles and antibodies and effectively deliver them to the specific breast and prostate cells. This review highlights the current researches in aptamer-conjugate developments for targeting breast and prostate cancers, with the special focus on the nanoparticle-aptamer bioconjugates, systematic evolution of ligands by exponential enrichment (SELEX) system and SDDS, especially cutting-edge articles from 2008 to present. Finally, the future prospects and challenges are described

    Enhanced carbohydrate-based plastic performance by incorporating cerium-based metal-organic framework for food packaging application

    Get PDF
    The development of biodegradable active packaging films with hydrophobic characteristics is vital for extending the shelf life of food and reducing the reliance on petroleum-based plastics. In this study, novel hydrophobic cerium-based metal-organic framework (Ce-MOF) nanoparticles were successfully synthesized. The Ce-MOF nanoparticles were then incorporated into the cassava starch matrix at varying concentrations (0.5 %, 1.5 %, 3 %, and 4 % w/w of total solid) to fabricate cassava-based active packaging films via the solution casting technique. The influence of Ce-MOF on the morphology, thermal attributes, and physicochemical properties of the cassava film was subsequently determined through further analyses. Biomedical analysis including antioxidant activity and the cellular morphology evaluation in the presence of the films was also conducted. The results demonstrated that the consistent dispersion of Ce-MOF nanofillers within the cassava matrix led to a significant enhancement in the film\u27s crystallinity, thermal stability, antioxidant activity, biocompatibility, and hydrophobicity. The introduction of Ce-MOF also contributed to the film\u27s reduced water solubility. Considering these outcomes, the developed cassava/Ce-MOF films undoubtedly have significant potential for active food packaging applications

    Blood Lead Levels in Asymptomatic Opium Addict Patients; a Case Control Study

    Get PDF
    Introduction: One of the newest non-occupational sources of lead contamination is drug addiction, which has recently been addressed as a major source of lead poisoning in some countries. The present study aimed to investigate the blood lead level (BLL) of asymptomatic opium addicts.Methods: This case-control study was conducted during a one-year period to compare BLL of three groups consisting of opium addicts, patients under methadone maintenance therapy (MMT), and healthy individuals.Results: 99 participants with the mean age of 55.43±12.83 years were studied in three groups of 33 cases (53.5% male). The mean lead level in opium addicts, MMT and control groups were 80.30 ± 6.03 μg/L, 67.94 ± 4.42 μg/L, and 57.30±4.77 μg/L, respectively (p=0.008). There was no significant difference in BLL between MMT and healthy individuals (p=0.433) and also between opium addicts and MMT individuals (p=0.271).Oral opium abusers had significantly higher lead levels (p = 0.036). There was a significant correlation between BLL and duration of drug abuse in opium addict cases (r=0.398, p=0.022). The odds ratio of having BLL ≥ 100 in oral opium users was 2.1 (95% CI: 0.92 - 4.61; p = 0.43).Conclusion:  Based on the result of present study, when compared to healthy individuals, opium addicts, especially those who took substance orally had significantly higher levels of blood lead, and their odds of having BLL ≥ 100 was two times. Therefore, screening for BLL in opium addicts, particularly those with non-specific complaints, could be useful

    Recent Advances in Porphyrin-Based Nanocomposites for Effective Targeted Imaging and Therapy

    Get PDF
    Porphyrins are organic compounds that continue to attract much theoretical interest, and have been called the “pigments of life”. They have a wide role in photodynamic and sonodynamic therapy, along with uses in magnetic resonance, fluorescence and photoacoustic imaging. There is a vast range of porphyrins that have been isolated or designed, but few of them have real clinical applications. Due to the hydrophobic properties of porphyrins, and their tendency to aggregate by stacking of the planar molecules they are difficult to work with in aqueous media. Therefore encapsulating them in nanoparticles (NPs) or attachment to various delivery vehicles have been used to improve delivery characteristics. Porphyrins can be used in a composite designed material with properties that allow specific targeting, immune tolerance, extended tissue lifetime and improved hydrophilicity. Drug delivery, healing and repairing of damaged organs, and cancer theranostics are some of the medical uses of porphyrin-based nanocomposites covered in this review

    Burgeoning Polymer Nano Blends for Improved Controlled Drug Release: A Review

    Get PDF
    With continual rapid developments in the biomedical field and understanding of the important mechanisms and pharmacokinetics of biological molecules, controlled drug delivery systems (CDDSs) have been at the forefront over conventional drug delivery systems. Over the past several years, scientists have placed boundless energy and time into exploiting a wide variety of excipients, particularly diverse polymers, both natural and synthetic. More recently, the development of nano polymer blends has achieved noteworthy attention due to their amazing properties, such as biocompatibility, biodegradability and more importantly, their pivotal role in controlled and sustained drug release in vitro and in vivo. These compounds come with a number of effective benefits for improving problems of targeted or controlled drug and gene delivery systems; thus, they have been extensively used in medical and pharmaceutical applications. Additionally, they are quite attractive for wound dressings, textiles, tissue engineering, and biomedical prostheses. In this sense, some important and workable natural polymers (namely, chitosan (CS), starch and cellulose) and some applicable synthetic ones (such as poly-lactic-co-glycolic acid (PLGA), poly(lactic acid) (PLA) and poly-glycolic acid (PGA)) have played an indispensable role over the last two decades for their therapeutic effects owing to their appealing and renewable biological properties. According to our data, this is the first review article highlighting CDDSs composed of diverse natural and synthetic nano biopolymers, blended for biological purposes, mostly over the past five years; other reviews have just briefly mentioned the use of such blended polymers. We, additionally, try to make comparisons between various nano blending systems in terms of improved sustained and controlled drug release behavior

    neurodegenerative diseases, tissue engineering and regenerative medicine

    Get PDF
    Funding This work was supported by grants from Fundação para a Ciência e Tecnologia (FCT) (SFRH/BD/148771/2019, 2021.05914.BD, PTDC/BTM-MAT/4738/2020), and also from the European Research Council—ERC Starting Grant (848325).A bio-inspired strategy has recently been developed for camouflaging nanocarriers with biomembranes, such as natural cell membranes or subcellular structure-derived membranes. This strategy endows cloaked nanomaterials with improved interfacial properties, superior cell targeting, immune evasion potential, and prolonged duration of systemic circulation. Here, we summarize recent advances in the production and application of exosomal membrane-coated nanomaterials. The structure, properties, and manner in which exosomes communicate with cells are first reviewed. This is followed by a discussion of the types of exosomes and their fabrication methods. We then discuss the applications of biomimetic exosomes and membrane-cloaked nanocarriers in tissue engineering, regenerative medicine, imaging, and the treatment of neurodegenerative diseases. Finally, we appraise the current challenges associated with the clinical translation of biomimetic exosomal membrane-surface-engineered nanovehicles and evaluate the future of this technology.publishersversionpublishe

    Use of biochar prepared from the açaí seed as adsorbent for the uptake of catechol from synthetic effluents

    Get PDF
    This work proposes a facile methodology for producing porous biochar material (ABC) from açaí kernel residue, produced by chemical impregnation with ZnCl2 (1:1) and pyrolysis at 650.0 °C. The characterization was achieved using several techniques, and the biochar material was employed as an adsorbent to remove catechol. The results show that ABC carbon has hydrophilic properties. The specific surface area and total pore volume are 1315 m2·g−1 and 0.7038 cm3·g−1, respectively. FTIR revealed the presence of oxygenated groups, which can influence catechol adsorption. The TGA/DTG indicated that the sample is thermally stable even at 580 °C. Adsorption studies showed that equilibrium was achieved i
    corecore