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Abstract 
Breast and prostate cancers are common types of cancers with various strategies, such as chemotherapy and 
radiotherapy, for their therapy. Since these methods have undesired side effects and poor target affinity, 
neoteric strategies—known as aptamer-based smart drug delivery systems (SDDSs)—have been developed in 
recent years to overcome the obstacles of current treatment, and investigated for a clinical trial. The high 
affinity and versatility of aptamers for binding to the corresponding targets make them highly noticeable agents 
in the drug delivery domains. In addition to their exceptional benefits, aptamers are able to overcome tumor 
resistance because of their high selectivity and low toxicity. Furthermore, aptamers can conjugate with various 
drugs, nanoparticles and antibodies and effectively deliver them to the specific breast and prostate cells. This 
review highlights the current researches in aptamer-conjugate developments for targeting breast and prostate 
cancers, with the special focus on the nanoparticle-aptamer bioconjugates, systematic evolution of ligands by 
exponential enrichment (SELEX) system and SDDS, especially cutting-edge articles from 2008 to present. Finally, 
the future prospects and challenges are described. 

Graphical abstract 
Breast and prostate cancers' mortality as the most important types of cancers have taken a heavy toll on women 
and men, respectively; hence there is a growing need for assessing diagnosis and treatment. Threfore, in this 
review, the recent advances in aptamer-bioconjugates treatments of breast and prostate cancers are highlited. 
Also, nanoparticle-aptamer bioconjugates, SELEX system and SDDS as the main approaches for these treatments 
are critically reviewed. 
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1. Introduction 
Breast and prostate cancers are the two most leading invasive human cancers, in terms of incidence, worldwide. 
For decades, therapy methods were confined to tumor cells or tissue morphologies instead of identifying the 
specifically targeted sites. Chemotherapy and radiation are primary therapies utilized for treating these cancers, 
but their major drawbacks forced researchers to discover neoteric treatment approaches [1]. Additionally, drugs 
that are commonly used for cancer treatment have some serious disadvantages, such as lack of solubility, 
bioavailability and fast blood clearance [2]. Therefore, concerns about diagnosis and therapeutic factors [3,4], 
along with recent developments in the pathophysiology of these cancers, open a new avenue leading to the 
novel treatment strategies [5]. 

Smart drug delivery systems (SDDS) have emerged as a cure-all for many useful chemotherapy drugs suffering 
from high toxicity. These systems are based on nanocarriers—such as dendrimers, liposomes, micelles and gold 
nanoparticles—in order to tackle the nonspecific and uncontrollable release [6] due to their low toxicity, half-life 
enhancement and cytotoxic protection from degradation [7]. These systems have benefits in comparison with 
traditional cancer therapies, such as reducing drug dosage and side effects [8]. Besides, targeted drug delivery 
systems exhibit dramatic results in identifying the malignant tumor, like improving the efficacy of selective 
distribution and controllable drug release at tumor locations [9]. Meanwhile, using nanocarriers-aptamers that 
are able to bind with various biological targets (i.e. peptides, antibodies and nucleic acids) are in the spotlight 
nowadays due to the shortage of immunogenicity and the higher proportion of target accumulation [10]. 

Aptamers are simple, small, single-stranded deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) that bind to 
target molecules with their high affinity and specificity by folding into a three-dimensional conformation similar 
to antibodies [11,12]. Aptamers can typically bind to various molecules, such as overexpressed receptors, 
through an in vitro iterative selection method termed SELEX (Systematic Evolution of Ligands by Exponential 
Enrichment) for diagnostic and therapeutic purposes [13]. In comparison with antibodies, aptamers are more 
beneficial, less toxic and easier to modify and synthesize in the lab. Additionally, aptamers have been chosen for 
their several benefits as a new family of cancer therapeutic compared to recent cancer therapies, such as 
monoclonal antibodies. These advantages consist of their promising affinity towards specific tumor cell lines, 
higher robustness than antibodies, fast in vitro selection, low immunogenicity and better penetration into solid 
tumor tissue [14,15]. Because of these unique advantages, scientists extensively have used aptamer-drug 
conjugates (ApDCs) with covalent or noncovalent conjugation in targeted cancer therapy [16,17]. Solid-phase 



system aids researchers to produce sequence predesigned and automated DNA synthesis from particular 
phosphoramidite building blocks (A, T, C, G and D) (Fig. 1) [17]. 

 

Fig. 1. Automated and molecular synthesis of ApDCs from phosphoramidite A, T, C, G and D [17]. Repreinted 
with permission. 

Recently, aptamers have attracted remarkable interest for their competitive advantages compared with other 
biological materials [18]. Also, different aptamers have been extensively used to load drugs and nanoparticles 
(NPS) for cancer therapy [19]. According to current studies, DNA aptamers were chosen for SK-BR-3 model 
breast cancer cell-line. By using the ionic-gelation procedure, NPS-containing DNA aptamers for paclitaxel (PTX) 
targeted delivery systems comprising chitosan and Pluronic®F127 (PF) were synthesized [20]. 

Aptamer-drug-NPS conjugates possess not only a wide range of potential benefits for clinical diagnostics—such 
as cancer bacteria, tissues and viruses—but also has outstanding ability in therapeutics [21]. Additionally, these 
platforms have succesfully appeared in biosensing. In recent work, Lu et al. performed a one-pot simultaneous 
detection of adenosine and cocaine using gold nanoparticles conjugated with aptamers and QDs (quantum 
dots). As a result, simultaneous colorimetric and fluorescent detection of mentioned molecules has been 
described [22,23]. This review represents the recent advances in aptamer-conjugates development for targeting 
breast and prostate cancers from 2008 until now. Also, the complementary discussion of the SELEX system, 
nanoparticle-aptamer bioconjugates and SDDS is presented. 

2. SELEX technique 
Aptamers can be identified through in vitro evolution called SELEX, which makes aptamer identification in a 
harmonic process [24]. SELEX is a process or principle for exploring high-affinity oligonucleotide ligand libraries 
by the combinational chemistry process [25,26]. In 1990, Tuerk and Gold selected two different RNA sequences 
that interact with the T4 DNA polymerase with high affinity and designed the SELEX method for the first time 
[27]. 

SELEX technique is repetitive rounds that allow the identification of unique RNA/DNA molecules from huge 
populations of random sequence oligomers that bind to the target, shown in Fig. 2 [28,29]. This process is 
performed in four steps: 

(1) Selection step for introducing the chemical groups into DNA/RNA library 

(2) Bound DNA section (selective to specific target) 

(3) Wash to remove unbound DNA 

(4) PCR (polymerase chain reaction) amplification 



 

Fig. 2. In vitro selection starts with the generation of a diverse library of DNA or RNA molecules. 

Generally, the library of ssDNA is reduced after 5 to 15 cycles to choose only aptamers with high affinity to 
targets [30,31]. In this repetitive process, some problems were observed that caused generation of modified 
aptamers. In order to fulfill this issue, Click-SELEX protocol has been introduced, which eliminates inappropriate 
enzymatic problems [32,33]. 

Click-SELEX is an attractive idea that allows the introduction of alkyne functional groups. Notably, the chemical 
modification of aptamers can be achieved by a combination of click-chemistry with nucleobase and in 
vitro selection processes. 

3. Recent function of aptamers conjugates for cancer targeting 

Design chemotherapy drugs has been really difficult, but this current research may affect the efficiency of 
antineoplastic remedy. Today, tumors become insensitive to several drugs in multi-drug resistance (MDR) 
[34,35]. Aptamers have been chosen for their several benefits as a new family of cancer therapeutic compared 
to recent cancer therapies, such as monoclonal antibodies. These advantages include their promising affinity 
towards specific tumor cell lines, higher robustness than antibodies, fast in vitro selection, low immunogenicity 
and better penetration into solid tumor tissue [14,15]. The aim of the review in this section is to focus on the 
published article over the four years in which aptamers-NPs-drug has been used for cancer targeting. Through 
alteration of NIR-absorbing nanocarriers with the ssDNA-caged sgc8 aptamer, Chen et al. demonstrated 
magnificent NIR light-activated particular cancer-cell binding with GNRs and SWNTs as a model system. This 
strategy has a dual-targeting capability in comparison with recently discovered cancer-targeting processes, such 
as reducing non-specific toxicity and increasing selectivity for treating tumor cells [36]. 

One of the most common drugs to the forefront of cancer therapy is 5-Fu (5-fluorouracil). In the recent study, 
Behrooz and his colleagues have developed new aptamer-drug conjugates in order to reduce side effects of 5-Fu 
in gastric cancer. They designed a complex consisting of nanocarrier PAMAM (Polyamidoamine), AS1411 
aptamer and 5-Fu. The 5-FU-dendrimer- aptamer was capable of effectively delivering chemotherapy drug to 
cancer cells, reducing both quantity of cancer cells as well as the IC50 [37]. In a recent study, Martinez and his 
colleagues produce the first aptamer to target on tumor cell MRP1-expressing cells with a new combinatorial 
SELEX. They developed MRP1-CD28, which can identify the tumor and deliver the CD28 to tumor-infiltrating 
lymphocytes. Results have observed a noticeable delay in tumor growth (Fig. 3) [38]. 



 

Fig. 3. The overall antitumor effect of the vaccine on mice vaccinated and challenge at day +15 was evaluated by 
tumor measurement (5 mice per group) [38]. Reprinted with permission. 

4. Breast cancer targeting Aptamer 
Breast cancer causes high female mortality, and the number of women who are in jeopardy has increased 
recently [39]. Usage of aptamers based on cell-SELEX is increasing for specific recognition of breast cancer cells 
[40]. 

In this section, we highlight some of the important achievements of aptamers, aptasensors and aptamers 
conjugated with [1] therapeutic agents [2], nanoparticles and [3] siRNA chimeras based on smart targeted 
delivery systems used for the diagnostics and therapeutics of breast cancer targeting in recent years. 

4.1. AS1411 breast cancer aptamer 
AS1411 is a significant antiproliferative G-rich phosphodiester oligonucleotide used as a remarkable anticancer 
agent in Phase II clinical tests [41]. AS1411 has an exceptional structure for binding to a particular cellular 
protein and resistance to nuclease degradation [42]. The DNA aptamer AS1411 largely demonstrates a strong 
binding affinity to nucleolin (Kd is in pM to low nM range) via its G-quadruplex structure [43]. AS1411 has been 
revealed to regulate Rac1 activation and antiproliferative properties that was measured by Bates et al. [44]. 
Recently, Ghahremani et al. demonstrated a new strategy for effective tumor targeting and megavoltage 
radiosensitizing by utilization of AS1411-aptamer conjugates with gold nanoclusters (GNCs) that are synthesized 
through BSA as the capping agent (Fig. 4). This method exhibited 39% of radiotherapy efficacy by taking 
advantage of flow cytometry and fluorescence microscopy. Importantly, the survival of the mice increased in 9 
days [45]. 



 

Fig. 4. AS1411 aptamer decorated GNCs for enhancement of radiation therapy effcacy. 

Apt–GNCs: Aptamer-conjugated gold Nano-clusters; BSA: Bovine serum albumin [45]. Reprinted with 
permission. 

In another report, Borghei et al. developed a colorimetric aptasensor based on aggregated nanocarriers in order 
to detect breast cancer cells. Fig. 5 illustrates the color change in the presence of the target (breast cancer) cell 
and normal cell. Due to the high affinity between the AS1411-aptamer and cancer cell, the removal of aptamers 
in the solution was triggered, and therefore, no aptamer remained to hybridize with ssDNA-AuNP, making the 
solution red. But, in the absence of breast cancer cell, aptamers assembled ssDNA-AuNP and remained in the 
purple solution [46]. Novel nanoparticle-AS1411 aptamer loaded docetaxel in a polydopamine (pD)-based 
surface (Apt-pD-DTX/NPs) demonstrated high affinity for both in vivo and in vitro cell studies, as described by 
Tao et al. This functionalized Apt-pD-DTX/NPs not only decreased adverse effects of Taxotere but also increased 
promising therapy and local drug concentration effects on breast cancer target [10]. 

 

Fig. 5. Schematic representation of selective colorimetric method for detection of cancer cells by employing DNA 
probe 1,2 -functionalized gold nanoparticles and AS1411 aptamer [46]. Reprinted with permission. 



A recent study reported the utilization of AS1411 aptamer conjugated with liposomes (containing DOX 
hydrochloride and ammonium bicarbonate) can effectively deliver and accumulate DOX to breast tumor cells 
(MCF-7/ADR). In this research, ammonium bicarbonate, a bubble-generating agent, helped to trigger the release 
of the DOX quickly into cancer cells simply by local heating (for generating CO2 bubbles), and as a result, the 
cancer cells were destroyed (Fig. 6) [47]. In an interesting work in 2017, Zhang and coworkers designed a new 
process for targeted drug delivery to MCF-7 breast cancer cells. For this purpose, they offered polymeric 
micelles, including poly (ethylene glycol)-poly (β-amino esters) based on doxorubicin and AS1411 aptamer called 
PEG-PAEs NPs (PDANs) [48]. 

 

Fig. 6. Selective binding of the AS1411 lyposome to nucleolin on breast cell surface, effectively leading to 
accumulation of DOX by local heating and generating CO2 bubbles and subsequent receptor-mediated 
endocytosis [47]. Reprinted with permission. 

Malik et al. constructed a novel AS144-aptamer conjugated to 5 nm gold nanospheres (AS1411-GNS) and 
demonstrated their potential applicability in both in vivo and in vitro tests for breast cancer cells. Cells were 
incubated with nanospheres for 72 h and proliferation was measured by MTT assay. This conjugated aptamer 
exhibited significantly superior cellular uptake and high cytotoxic results. As illustrated in Fig. 7, two important 
breast cancer cells, including MCF-7 and MDA-MB-231, as well as non-malignant breast epithetical cells 
(MCF10A), were affected by AS1411-GNS. We can see how AS1411-GNS has the antiproliferative effects on MCF-
7 and MDA-MB-231, but not major inhibitory impact on MCF10A. High selectivity, improved growth inhibitory 
and increased cytotoxicity are other advantages of this research, which make them prospective candidates for 
clinical translation [49]. 

 

Fig. 7. Antiproliferative activity of AS1411-GNS on the growth of breast cancer cells toward MCF-7, MDA-MB-231 
and MCF10A in different concentrations [49]. Reprinted with permission. 

4.2. EpCAM breast cancer aptamer 
Epithelial cell adhesion molecule (EpCAM also known as CD326 or ESA), a cell surface glycoprotein of 
approximately 40 kDa, is overexpressed in a variety of epithelial cancer cell lines such as breast, colon and 
ovarian cancer. Epithelial cell adhesion molecule is a well-known antigen that plays an important role human 
colon carcinoma tissue [50]. This molecule has gained enormous interest for novel cancer targeting, especially 



for breast cancer cell surface [51] and efficiently applied in the case of developing new therapeutic approaches 
for targeted drug delivery [52]. 

To date, scientists have made several attempts to utilize more EpCAM-aptamer as a good way for cancer 
diagnosis and therapy, particularly for breast cancer. In this regard, Hadizadeh et al. developed an EpCAM-
aptamer conjugated with PEG–PLGA copolymer for delivering doxorubicin (DOX) into a breast cancer cell in 
vitro. Fig. 8 demonstrates the procedure for synthesizing of doxorubicin-loaded aptamer conjugated 
nanopolymersomes, which were more cytotoxic (P < 0.01) toward MCF-7 than non-targeted 
nanopolymersomes. The results of this research were admirable due to the increasing the DOX release rate up 
to 8% over 5 days [53]. 

 

Fig. 8. Process of producing EpCAM-aptamer conjugated DOX-loaded nanopolymersomes. 

In continuation, Shigdar et al. developed 19-nt RNA aptamer, which was isolated from 40-base RNA aptamer 
that binds selectively to EpCAM in the breast, colorectal and gastric cancers, followed by active internalization, 
for the first time. They evaluated the binding affinity of the EpCAM RNA aptamer to a specific target through 
flow cytometry and confocal microscopy and the affinity was approximately 55 nM. Importantly, this EpCAM 
RNA aptamer is efficiently internalized after binding to cell surface EpCAM [54]. In another report in 2017, Xiang 
and his group developed a novel EpCAM aptamer to tackle the problems with chemotherapy-resistant cancer 
stem cells and enhance the doxorubicin intercalation to colorectal, ovarian and breast cancer [55]. In an 
interesting effort, to address the Dox-resistance and deliver efficacy of the Dox to in vivo MCF-7 human breast 
cancer cells, a new strategy was reported by Wang et al. For this purpose, they used EpCAM aptamer-siRNA and 
Dicer Survivin, an important protein in drug resistance, which is highly expressed in cancer stem. As a result, this 
strategy demonstrated a high dose of the siRNA delivered to MCF-7 cell in xenograft tumors and silencing of 
survivin with EpCAM aptamer-siRNA chimera in cancer stem cell population [56]. 

Locked Nucleic Acid (LNA) modification is responsible for demonstrating increased hybridization affinity toward 
complementary of RNA and DNA [57], which was first synthesized by Wengel et al. [58]. The potential in 
vivo roles of LNA-modified EpCAM-aptamer was performed toward an experiment with the MDAMB453 breast 
cancer cells siRNA transfection as a positive control. Consequently, MDAMB453 was inhibited remarkably and 
showed high fluorescence intensity (MFI) [59]. 

4.3. MUC1 as a breast cancer aptamer 
MUC1 is one of the important breast cancer targets that is overexpressed at the apical surface in various types 
of reproductive tract epithelia including lung, kidney, stomach, pancreas and breast [60]. It is also an effective 
tumor-associated antigen (TAA). Dai and his colleagues reported a valuable targeted delivery system for 
delivering DOX to breast cancer cells in vitro. In this project, MUC1 positive target was bound to DNA 
tetrahedron to make apt-td, which could deliver DOX to MUC1-positive breast cancer cells with high affinity, but 



not to negative breast cancer targets. Compared to free MUC1-aptemer (one per aptamer), this material has a 
high capacity to load the DOX (25 per apt-td) [61]. In another work, based on the smart drug delivery 
approaches that aid scientists to develop cytotoxic drugs with reduced dosage, the novel 86-base DNA aptamer 
(MA3) was designed to selectively deliver the cytotoxic DOX only to the MUC1-positive breast cancer cells. 
However, an in vivo study is essential to assess the stability of MA3-apt in blood and tissue [62]. Mesoporous 
silica nanoparticles (MSNs) have attracted great attention as multifunctional smart nanocarriers for drug 
delivery system and cell imaging [63]. Following this approach, Hanafi-Bojd et al. designed a MUC1-aptamer 
conjugated MSNs in order to deliver Epirubicin (EPI) effectively to breast cancer cells. They demonstrated that 
MSN-MUC1-EPI has been a significant improvement in cytotoxicity versus MSN-EPI against MCF-7 cells [64]. In 
order to specifically release drugs in tumoral cells, MSNs loaded with safranin O conjugated MUC1 aptamer (S1-
apMUC1) was developed by Pascual et al. The same procedure was used to load DOX instead of safranin O (S2-
apMUC1). Both compounds were internalized significantly by MUC1 overexpressed breast cancer cells and 
delivered remarkable cargo (safranin O and DOX) to cancer cell line. S1-apMUC1-Tc (S1-apMUC1 with 99mTc 
radioisotope) was used as a radiolabeling tool (Fig. 9) [65]. 

 

Fig. 9. (A) Schematic diagram for synthesis of S1-apMUC1, S2-apMUC1 and S1-apMUC1-Tc. (B) The role of S1-
apMUC1-Tc [65]. Reprinted with permission. 

Yu et al. exploited MUC1-aptamer for increasing drug delivery and cytotoxicity (P < 0.01) in comparison with 
paclitaxel to MCF-7 cancer cells loaded by liposomal formulations [8]. Also, Jo et al. developed a dual-aptamer 
modified silica nanoparticles (dye-doped) system with high affinity to both mucin 1 (MUC-1) (+) and epidermal 
growth factor receptor 2 (HER-2) (+) breast cancer cells. In comparison with the single aptamer, the mentioned 
system showed high selectivity and promising detection of breast cancer, as well as low cytotoxicity [66]. 

4.4. HER2 as a breast cancer aptamer 
The human epidermal growth factor receptor 2 (HER2 or ErbB2) consists of HER1, HER3 and HER4 [67] and was 
discovered in 1985. HER2 overexpression plays an important role in different types of human malignancies [68]. 
HER2 is one of the important targets that has been examined in breast cancer therapy [69]. Having HER2 
positive breast cancer in human increases mortality and causes high recurrence rates [70]. Determination of 
HER2 positive has been considered as an important method in cancer diagnosis [71]. Sett et al. made a point of 
developing a novel DNA aptamer against the extracellular domain (ECD apt1) of HER2. In this study, based on in 
vitro SELEX process, ECD apt1 demonstrated cytoplasmic staining in overexpression HER2 [72]. Likewise, 



conjugation of ECD apt1 with biotin exhibited powerful cytoplasmic staining in SKBR3 than MDA-MB-231 and 
MCF-7 [73]. Nguyen et al. reported HER2 aptamer-micelle for delivering better of PTX and effective detection of 
human HER2 overexpressing SK-BR-3 breast cancer cell lines. The designed PTX-chitosan grafted to pluronic 
F127 copolymer micelles with DNA aptamer. The results showed a higher affinity and cytotoxicity of the 
designed platform in comparison with PTX and bare ap-micelles [74]. Recently, Yu et al. developed three-in-one 
aptamer-siRNA chimera that targeted EGFR/HER2/HER3 in one molecule, both in vitro and in vivo. They created 
a HER2 aptamer-EGFR siRNA-HER3 (H2EH3), shown in Fig. 10. H2EH3 exhibited high affinity and selectivity to 
breast cancer xenograft models, compared to both HER2 aptamer and HER3 aptamer. In addition, tumor growth 
was inhibited dramatically [75]. 

Fig. 10. Structure of H2EH3, which constitutes from conjugation of HER2 aptamer with HER3 aptamer through 21 
bases of EGFR siRNA and 2–4 unpaired base linkers [75]. Reprinted with permission. 

In 2018, Shen et al. developed pH-responsive micelle-like nanoparticles (MNPs) based-HER2 aptamer (HApt-
MNPs). Compared to free HER2 aptamer, the HApt-MNPs was able to Ref. [1] deliver more effectively to a 
specific target and [2] enhance HER2 aptamer uptake and lysosomal transport in HER2 SKBR3 cells in vitro (Fig. 
11) [76]. 

Fig. 11. sKBr3 cells were treated with hapt-MNPs or free hapt for 8 h at the same hapt concentration (125 nM), 
followed by fresh complete media for 16 h, then stained with lysosome tracker (green fluorescence) and 
Hoechst 33342 (blue fluorescence). (A) Confocal fluorescence microscopy images. Cellular signals were much 
stronger for hapt-MNPs (red, top panel) than free-hapt (red, bottom panel). scale bars = 10 μm. (B) Western blot 
of her2 protein expression. β-actin was used as a protein loading control. Mean (±sD) her2 band intensity was 



24,454.43 (±1632.02) for hapt-MNPs and 79,276.08 (±2162.13) for free hapt (n = 3) [76]. Reprinted with 
permission. 

4.5. The other nanocarriers-aptamer bioconjugates for breast cancer treatment 
Since gold nanoparticle (AuNP) has a wide variety of applications on account of their color transition properties, 
aptamer-functionalized AuNP was developed for detecting the human estrogen receptor alpha (ERα), a crucial 
biomarker in breast cancer diagnosis, by Ahirwar and coworkers. This colorimetric aptasensor was tested on 
cellular extracts from MCF-7 and MDA-MB-231 breast cancer cells and subsequently changing the color of 
aptamer-protected nanoparticles became visible from red to the blue of aggregated AuNPs [77]. Notably, in 
vitro conjugation of aptamer 1(Apt1) and PEGylated liposomes demonstrated a high affinity to CD44 + cancer 
cells line compared with CD44− 3T3 [78]. 

5. Prostate cancer targeting Aptamer 
Prostate cancer (PC) is the second most common cancer among the men in the world [79] after lung cancer 
[80]. Current studies in prostate cancer demonstrate that localized prostate cancer can be cured significantly, do 
not have remarkable survival benefits and many men die annually for metastatic prostate disease [81,82]. 
Inhibiting the androgen receptor (AR), the main oncogenic driver in prostate cancer, is the ongoing projects that 
many drugs are attempting to achieve [83]. In this part, we demonstrate the most important studies of 
aptamers and aptamers conjugated with therapeutic agents and nanoparticles, based on smart targeted delivery 
system that have been used for diagnostics and therapeutics of prostate cancer targeting in recent years. 

5.1. Prostate specific membrane antigen aptamer 
Prostate-specific membrane antigen (PSMA, also known as A10) is the most famous cell surface antigen of 
prostate cancer that is highly expressed on the surface of human prostatic adenocarcinoma (LNCaP) 
[[84], [85], [86]]. It is assessed in primary and metastatic prostate tumor cells, which have been an important 
target for prostate cancer diagnosis and therapeutic [87]. Leach et al. synthesized a new RNA and DNA hybrid 
aptamer named A10-3-J1 based on A10-3 aptamer with high affinity to PSMA. In this study, A10-3-J1 is 
selectively conjugated with superparamagnetic iron oxide nanoparticles (SPIO-NP) in order to load DOX to 
PSMA+ prostate cancer cells. This experiment brought some significant results, such as enhancing the 
cytotoxicity of targeted cells, mitigating collateral damage and increasing affinity of DOX [88]. Several studies 
have described gold nanoparticles as great candidates for prostate cancer treatment due to their positive effects 
on prostate cancer cell lines [89]. In this regard, Kim and coworkers developed a multifunctional gold 
nanoparticles conjugated with PSMA-specific A9 RNA aptamer for selective delivery of DOX to overexpressed 
PSMA of prostate cancer cells that enables combined prostate cancer imaging by computed tomography (CT). 
They demonstrated the effective capability of this aptamer for killing target prostate cancer cell more than non-
target cells [90]. Efficient delivery of microRNA (miR-15a and miR-16-1) to in vivo and in vitro PSMA target was 
performed by Hao and his group. They used A10–3.2 aptamer (APT) conjugated with Atelocollagen (ATE), ATE-
APT, which were loaded with miR-15a and miR-16-1 to PC3 (PSMA−) and LNCaP (PSMA+) targets. In 
vivo anticancer activity was investigated using the survival times of human PCa bone metastasis mice model. 
ATE-APT was able to deliver miR-15a and miR-16-1 to PSMA cells and, consequently, could kill the PCa cells in 
bone metastatic foci and improve cell viability (Fig. 12) [91]. 



 

Fig. 12. Viability of LNCaP cells treated with miRNA/ATE–APT, NC-miRNA/ATE–APT and miRNA/ATE complexes 
(n = 3, error bars represent the standard deviation). APT, aptamer; ATE, atelocollagen; and NC, negative control 
[91]. Reprinted with permission. 

Zhang et al. reported synthesis of a DNA nanoparticle containing PSMA-aptamer for targeted drug delivery of 
DOX using a pH-sensitive spacer composed of adenine repeats. Because of integration of pH-sensitive spacer, 
nanoparticles were able to break apart at acidic pH, and therefore caused fast release of the DOX. Moreover, a 
cell uptake study showed that DOX was bound to more PSMA+ cells than PSMA-null cells for prostate cancer 
therapy [92,93]. Farokhzad et al. utilized docetaxel (DTX) encapsulated with PLG-PEG copolymer, which 
functioned with A10 2-fluoropyrimidine RNA aptamer (DTX-NP-Apt) that binds effectively to PSMA on the 
surface of LNCaP prostate cancer cell. In vitro (P < 0.0004) and in vivo cellular toxicity increased remarkably using 
a LNCaP xenograft nude mouse model of PCa that results in enhanced cytotoxicity and anticancer activity 
[94,95]. Antitumor activity of aptamer nanoparticle for acceptable loading of DTX (DTX-apt-NPs) was performed 
against both in vivo and in vitro prostate cancer. Sodium oleate and PLG-b-PEG were utilized through the solvent 
diffusion procedure. Gao et al. reported that DTX-apt-NPs could dramatically improve the delivery of DTX to 
PSMA+ prostate cancer and increased the antitumor efficacy of DTX by aptamer-mediated intracellular delivery 
(Fig. 13) [96]. 

 

Fig. 13. Effective delivery of DTX through DTX-apt-NPs [96]. Reprinted with permission. 



Cisplatin demonstrated high ability in a clinical trial to manage metastatic castration-resistance prostate cancer, 
however, its resistance and adverse effects make it a drug with limited use in cancer therapy [97,98]. In order to 
tackle these problems, Dhar and his group developed an applicable strategy by using Pt (IV)-encapsulated PSMA-
aptamer of PLG-b-PEG nanoparticles. As a result, suitable dose of Cisplatin was loaded to target PSMA. Also, 
effective targeting against PSMA+ LNCaP was described [99]. In addition, the combination of ApDCs with 
radiotherapy in PSMA+ tumor and their noticeable therapeutic results has been described [100]. In vitro study 
evaluated the potential of targeted liposomes loaded with 225Ac. In this study, A10 anti-PSMA-aptamer 
conjugated with PEGylated liposomes loaded with a-particle generator 225Ac selectively killed prostate-specific 
membrane antigen. The results of this report confirmed the rapid internalizing, selective binding to specific 
target and PSMA+ killing [101]. 

6. Conclusion and future prospects 
Breast and prostate cancers' mortality as the most important types of cancers have taken a heavy toll on women 
and men, respectively; hence there is a growing need for assessing diagnosis and treatment. Several attempts 
have been made to address these cancers such as chemotherapy and radiation which most of them bring about 
several problems including low accumulation in tumor cells and low target selectivity. Therefore, targeted drug 
delivery may tackle these limitations and improve their disadvantages. In recent years, aptamers and synthetic 
oligonucleotide moleclules isolated in vitro demonstrated high target affinity as well as reduced toxicity. 
Aptamer-bioconjugates with a wide variety of benefits have demonstrated multifunctional capability for breast 
and prostate therapies and diagnostics. Nevertheless, remarkable challenges and issues remain to be tackled to 
use them for clinical use, such as low drug loading, weakly understood pharmacokinetics, toxicity and costly in 
vivo testing. More imporatantly, due to the small size and the rapid degradability of aptamers through different 
nucleases in vivo, they are more likely to be modified by different groups of agents resulted in increased cost 
and side effects. To solve this, scientists should carry out more animal models for the evaluation of safety and 
efficacy of aptamer-bioconjugates. Moreover, as finding potential targets needs boundless time and effort, the 
SELEX technology is quite time consuming and labor intensive even though a variety of methods are being 
developed for aptamer screening. Thus, different methods should be taken into consideration to decrease the 
cost of aptamer SELEX strategy in vivo in the future. In this sense, in order to reduce toxicity and improve target 
efficacy of aptamer-bioconjugates, some procedures can be investigated carefully such as surface charge, 
coating, biocompatibility and biodegradability of conjugates as well as optimization of the surface modification 
of conjugates. To the best of our knowledge, although aptamer-bioconjugates play an indispensable role in 
cancer therapy, to accurately assess therapeutic efficacy and ameliorate clinical practise of aptamer-
bioconjugates, it is of paramount importance to evaluate more clinically and pathologically in relation to animal 
models. Furthermore, the SELEX strategy requires more experiments to choose appropriate aptamers from an 
oligonucleotide library. For the near future, we should be hopeful for the design of new generations of 
nanocarriers-aptamer bioconjugates to address all limitations, particularly, for clinical use. Some of the aptamer-
drug conjugates systems are summarized in Table 1. 

Table 1. Some other aptamer-drug conjugate systems for targeted drug delivery. 

Target Aptamer(DNA/
RNA) 

Therapeutic agent Status Ref 

PSMA(PC) E3 MMAE and MMAF In vivo and In vitro [102] 
PSMA(PC) A10 Plumbagin In vivo [103] 
PSMA(PC) A10–3.2 Paclitaxel In vivo and In vitro [104] 
PSMA(PC) nanobubbles A10–3.2 siRNA-cationic In vivo and In vitro [105] 



PSMA(PC) A10 TFO In vivo [106] 
MUC1(BC) DNA aptamer Doxorubicin In vivo and In vitro [107] 
MUC1(BC) DNA aptamer Paclitaxel In vitro [108] 
MUC1(BC) DNA aptamer miR-34a In vivo and In vitro [109] 
Nucleolin FOXM1(BC) AS1411 and Doxorubicin In vivo and In vitro [110] 
Nucleolin AS1411(BC) Doxorubicin In vivo and In vitro [111] 
Nucleolin AS1411(BC) Paclitaxel In vitro [112] 
Nucleolin AS1411(BC) Cisplatin In vitro [113] 
Nucleolin AS1411(BC) Doxorubicin In vivo and In vitro [18] 
Nucleolin AS1411(BC) Fluorescein In vivo and In vitro [114] 
HER2+(BC) HER2 Docetaxel In vivo and In vitro [115] 
HER2+(BC) A6 P-gp In vitro [116] 
HER2+(BC) HB5 Doxorubicin In vitro [117] 
EpCAM(BC) EpCAM Nutlin-3a In vitro [118] 
EpCAM(BC) EpCAM Neocarzinostatin In vitro [119] 

PSMA: Prostate-specific membrane antigen, MMAE: Monomethyl auristatin E, MMAF: Monomethyl auristatin F, 
TFO: Triplex forming oligonucleotides, HER2: Human epidermal growth factor receptor 2, EpCAM: Epithelial cell 
adhesion molecule. 
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