285 research outputs found
What you know can influence what you are going to know (especially for older adults)
Stimuli related to an individual's knowledge/experience are often more memorable than abstract stimuli, particularly for older adults. This has been found when material that is congruent with knowledge is contrasted with material that is incongruent with knowledge, but there is little research on a possible graded effect of congruency. The present study manipulated the degree of congruency of study material with participants’ knowledge. Young and older participants associated two famous names to nonfamous faces, where the similarity between the nonfamous faces and the real famous individuals varied. These associations were incrementally easier to remember as the name-face combinations became more congruent with prior knowledge, demonstrating a graded congruency effect, as opposed to an effect based simply on the presence or absence of associations to prior knowledge. Older adults tended to show greater susceptibility to the effect than young adults, with a significant age difference for extreme stimuli, in line with previous literature showing that schematic support in memory tasks particularly benefits older adults
The Effects of Attentional Engagement on Route Learning Performance in a Virtual Environment: An Aging Study
Route learning is a common navigation task affected by cognitive aging. Here we present a novel experimental paradigm to investigate whether age-related declines in executive control of attention contributes to route learning deficits. A young and an older participant group was repeatedly presented with a route through a virtual maze comprised of 12 decision points (DP) and non-decision points (non-DP). To investigate attentional engagement with the route learning task, participants had to respond to auditory probes at both DP and non-DP. Route knowledge was assessed by showing participants screenshots or landmarks from DPs and non-DPs and asking them to indicate the movement direction required to continue the route. Results demonstrate better performance for DPs than for non-DPs and slower responses to auditory probes at DPs compared to non-DPs. As expected we found slower route learning and slower responses to the auditory probes in the older participant group. Interestingly, differences in response times to the auditory probes between DPs and non-DPs can predict the success of route learning in both age groups and may explain slower knowledge acquisition in the older participant group
Drawing to Remember: External Support of Older Adults’ Eyewitness Performance
Although healthy aging is accompanied by a general decline in memory functioning, environmental support at retrieval can improve older adults’ (+65 years) episodic remembering. Despite those over the age of 65years representing a growing proportion of the population, few environmental retrieval support methods have been empirically evaluated for use with older witnesses and victims of crime. Here, the efficacy of a novel retrieval technique, the Sketch Mental Reinstatement of Context, is compared with a standard Mental Reinstatement of Context and a no support control (Control). Fifty-one participants witnessed an unexpected live event, and 48 hours later were interviewed using one of three aforementioned techniques. In line with predictions emanating from cognitive theories of aging and the environmental support hypothesis, participants in the Sketch Mental Reinstatement of Context condition recalled significantly more correct information and fewer inaccurate items. The Sketch Mental Reinstatement of Context technique appears to scaffold memory retrieval in an age-appropriate manner during a post-event interview, possibly by encouraging more effortful retrieval and reducing dual-task load. As such, this procedure offers an effective alternative to current approaches, adding to the toolbox of techniques available to forensic and other interviewers
Age-related decline in associative learning in healthy Chinese adults
10.1371/journal.pone.0080648PLoS ONE811-POLN
Differential information transfer and loss between working memory and long-term memory across serial positions.
Working memory (WM) is the cognitive system that allows the temporary holding of mental representations for use in thought and action. Long-term memory (LTM) refers to our ability to remember a potentially unlimited amount of information over longer time periods. Understanding how these two memory systems interact has important implications for theories of cognition, learning, and education. Here, we examined (a) whether a shared perceptual bottleneck accounts for the relation between WM and LTM accuracy, and (b) whether serial position effects in WM are mirrored in LTM. In two experiments, participants studied sequences of objects at varying set sizes and completed old/new recognition tests for some items immediately after encoding (WM tests) and for other items after all WM trials were completed (LTM tests). In Experiment 1 (N = 80), LTM performance was better for items presented in lower rather than higher set size sequences, indicating that limitations in WM capacity constrain LTM encoding, irrespective of perceptual bottlenecks. In Experiment 2 (N = 120), we observed WM and LTM recency effects, but primacy effects were only present in LTM and not in WM. Thus, serial position effects in WM did not consistently predict the relative rates at which items from different serial positions were preserved in LTM. These results reinforce accounts that view WM and LTM as having at least partially separate mechanisms, shedding light on the nature of these mechanisms. (PsycInfo Database Record (c) 2025 APA, all rights reserved)
Is the superior verbal memory span of Mandarin speakers due to faster rehearsal?
It is well established that digit span in native Chinese speakers is atypically high. This is commonly attributed to a capacity for more rapid subvocal rehearsal for that group. We explored this hypothesis by testing a group of English-speaking native Mandarin speakers on digit span and word span in both Mandarin and English, together with a measure of speed of articulation for each. When compared to the performance of native English speakers, the Mandarin group proved to be superior on both digit and word spans while predictably having lower spans in English. This suggests that the Mandarin advantage is not limited to digits. Speed of rehearsal correlated with span performance across materials. However, this correlation was more pronounced for English speakers than for any of the Chinese measures. Further analysis suggested that speed of rehearsal did not provide an adequate account of differences between Mandarin and English spans or for the advantage of digits over words. Possible alternative explanations are discussed
Recommended from our members
Memory for medication side effects in younger and older adults: the role of subjective and objective importance
Older adults often experience memory impairments, but can sometimes use selective processing and schematic support to remember important information. The current experiments investigate to what degree younger and healthy older adults remember medication side effects that were subjectively or objectively important to remember. Participants studied a list of common side effects, and rated how negative these effects were if they were to experience them, and were then given a free recall test. In Experiment 1, the severity of the side effects ranged from mild (e.g., itching) to severe (e.g., stroke), and in Experiment 2, certain side effects were indicated as critical to remember (i.e., “contact your doctor if you experience this”). There were no age differences in terms of free recall of the side effects, and older adults remembered more severe side effects relative to mild effects. However, older adults were less likely to recognize critical side effects on a later recognition test, relative to younger adults. The findings suggest that older adults can selectively remember medication side effects, but have difficulty identifying familiar but potentially critical side effects, and this has implications for monitoring medication use in older age
EXPRESS: Different measures of working memory decline at different rates across adult ageing, and dual task costs plateau in mid life
Working memory allows us to store information in mind over brief time periods while engaging in other information-processing activities. As such, this system supports cognitive dual-tasking, that is, remembering information while performing a concurrent processing task. Age-related dual-task deficits have been proposed as a critical feature of lifespan cognitive decline. However, evidence regarding such deficits has been mixed, and knowledge of the conditions under which such deficits appear remains elusive. Moreover, several studies have suggested that different aspects of working memory decline at different rates with age and that age-related change is not necessarily linear. We explored lifespan changes in 539 participants (aged 15-90 years) on several memory, processing, and dual (combined) tasks. We addressed two research questions: (1) Does the magnitude of dual-task costs change across the lifespan? (2) Do different measures of memory, processing, and dual-tasking, all decline at the same rate with age? We found that younger-young adults outperformed all other participants on dual-task measures. However, deficits did not appear to increase from the age of 35 years into older age, suggesting that dual-task ability declined in early adulthood but not thereafter between midlife and older age. Processing performance appeared to decline linearly and more rapidly with age than memory performance. Our finding that for some measures, the largest changes occurred in the transition from early to middle adulthood, provides an interesting contrast to the widely held assumption that cognition declines continuously across the adult lifespan
Storage and processing in working memory:Assessing dual-task performance and task prioritization across the adult lifespan
Age and the Neural Network of Personal Familiarity
BACKGROUND: Accessing information that defines personally familiar context in real-world situations is essential for the social interactions and the independent functioning of an individual. Personal familiarity is associated with the availability of semantic and episodic information as well as the emotional meaningfulness surrounding a stimulus. These features are known to be associated with neural activity in distinct brain regions across different stimulus conditions (e.g., when perceiving faces, voices, places, objects), which may reflect a shared neural basis. Although perceiving context-rich personal familiarity may appear unchanged in aging on the behavioral level, it has not yet been studied whether this can be supported by neuroimaging data. METHODOLOGY/PRINCIPAL FINDINGS: We used functional magnetic resonance imaging to investigate the neural network associated with personal familiarity during the perception of personally familiar faces and places. Twelve young and twelve elderly cognitively healthy subjects participated in the study. Both age groups showed a similar activation pattern underlying personal familiarity, predominantly in anterior cingulate and posterior cingulate cortices, irrespective of the stimulus type. The young subjects, but not the elderly subjects demonstrated an additional anterior cingulate deactivation when perceiving unfamiliar stimuli. CONCLUSIONS/SIGNIFICANCE: Although we found evidence for an age-dependent reduction in frontal cortical deactivation, our data show that there is a stimulus-independent neural network associated with personal familiarity of faces and places, which is less susceptible to aging-related changes
- …
