3,629 research outputs found

    Storm-Time Equatorial Thermospheric Dynamics and Electrodynamics

    Get PDF
    We present the first complete study of the dynamics of the equatorial upper atmosphere (180-350 km) during periods of strong magnetic activity driven by the Sun, which are generally referred as geomagnetic storms. These storms have the potential to considerably affect satellite-based communications and navigation systems among other severe technological challenges. We used large databases of two of the most important parameters at these altitudes, which are the velocities of the neutral and ionized gas (plasma) referred to as neutral winds and plasma drifts. These measurements were acquired in the Peruvian equatorial region by the Jicamarca radar and by a network of optical instruments nearby. In the first part, we derived average patterns of the neutral winds under weak geomagnetic activity conditions, or quiet times, for different seasons and compared them with predictions from current upper-atmospheric models. Then, we present, for the first time, the seasonal patterns of the night-time perturbations in the neutral winds at equatorial latitudes, and their variations for different solar-driven geomagnetic storms. These wind perturbations are strongest in the east-west direction and around midnight. They are strongest and longer lasting during and after extended periods of geomagnetic activity. We present a simple empirical model that significantly improves the prediction of the perturbations in the neutral winds compared with current models. In the second part, we derive the velocity perturbations in the plasma drifts along the vertical direction following 3 to 9 hours of geomagnetic activity. We show in detail that these vertical velocity perturbations are small and down-ward during the day and upward and stronger at night, and vary throughout the year and for different solar conditions. They are strongest near sunrise and sunset and during the equinoxes. In the last part of the thesis, we show the close relationship of the neutral wind and plasma drift velocities along the east-west direction during both geomagnetic quiet and disturbed conditions. Finally, we summarize our main results and make suggestions to improve the understanding of this important topic

    Storm-Time Thermospheric Winds Over Peru

    Get PDF
    We used Fabry-Perot Interferometer (FPI) observations at Jicamarca, Nasca and Arequipa, Peru from 2011 to 2017 to study the nighttime zonal and meridional disturbance winds over the Peruvian equatorial region. We derived initially the seasonal-dependent average thermospheric winds corresponding to 12 hours of continuous geomagnetically quiet conditions. These quiet-time climatological winds, which are in general agreement with results from the Horizontal Wind Model (HWM14), were then used as baselines for the calculation of the disturbance winds. Our results indicate that the nighttime zonal disturbance winds are westward with peak values near midnight and with magnitudes much larger than predicted by the Disturbance Wind Model (DWM07). The premidnight equinoctial and June solstice westward disturbance winds have comparable values and increase with local time. The postmidnight westward disturbance winds decrease towards dawn and are largest during equinox and smallest during June solstice. The meridional average disturbance winds have small values throughout the night. They are northward in the premidnight sector, and southward with larger (smaller) values during December solstice (equinox) in the postmidnight sector. We also present observations showing that during the main and recovery phases of the April 2012 and May 2016 geomagnetic storms the zonal disturbance winds have much larger magnitudes and lifetimes (up to about 48 hours) than suggested by the HWM14. These observations highlight the importance of longer-term disturbance wind effects. The large and short-lived (about 2 hours) observed meridional wind disturbances are not reproduced by current climatological empirical models

    Immunity and simplicity in relativizations of probabilistic complexity classes

    Get PDF
    The existence of immune and simple sets in relativizations of the probabilistic polynomial time bounded classes is studied. Some techniques previously used to show similar results for relativizations of P and NP are adapted to the probabilistic classes. Using these results, an exhaustive settling of all possible strong separations among these relativized classes is obtained.On étudie les relativisations des classes de complexité probabiliste polynômiale. On adapte aux classes probabilistes des techniques déjà utilisées pour établir des résultats similaires pour les relativisations de P et NP. On obtient à partir de ces résultats une classification de toutes les propriétés de séparation forte pour ces classes relativisées.Peer ReviewedPostprint (published version

    A quantum model of Schwarzschild black hole evaporation

    Get PDF
    We construct a one-loop effective metric describing the evaporation phase of a Schwarzschild black hole in a spherically symmetric null-dust model. This is achieved by quantising the Vaidya solution and by chosing a time dependent quantum state. This state describes a black hole which is initially in thermal equilibrium and then the equilibrium is switched off, so that the black hole starts to evaporate, shrinking to a zero radius in a finite proper time. The naked singularity appears, and the Hawking flux diverges at the end-point. However, a static metric can be imposed in the future of the end-point. Although this end-state metric cannot be determined within our construction, we show that it cannot be a flat metric

    Novel conducting polymer current limiting devices for low cost surge protection applications

    Get PDF
    We report on the development of novel intrinsic conducting polymer two terminal surge protection devices. These resettable current limiting devices consist of polyaniline nanofibres doped with methane sulphonic acid electrochemically deposited between two 55 μm spaced gold electrodes. At normal applied voltages, the low resistance devices act as passive circuit elements, not affecting the current flow. However during a current surge the devices switch from ohmic to non-ohmic behaviour, limiting current through the device. After the current surge has passed, the devices reset back to their original state. Our studies show that a partial de-doping/re-doping process caused by the rapid diffusion of moisture out of or into the polymer film during joule heating/cooling is the underlying mechanism responsible

    Enhanced quench propagation in 2G-HTS coils co-wound with stainless steel or anodised aluminium tapes

    Get PDF
    Early quench detection and thermal stability of superconducting coils are of great relevance for practical applications. Magnets made with second generation high temperature superconducting (2G-HTS) tapes present low quench propagation velocities and therefore slow voltage development and high local temperature rises, which may cause irreversible damage. Since quench propagation depends on the anisotropy of the thermal conductivity, this may be used to achieve an improvement of the thermal stability and robustness of 2G-HTS coils. On pancake type coils, the thermal conductivity along the tapes (coil's azimuthal direction) is mostly fixed by the 2G-HTS tape characteristics, so that the reduction of anisotropy relies on the improvement of the radial thermal conductivity, which depends on the used materials between superconducting tapes, as well as on the winding and impregnation processes. In this contribution, we have explored two possibilities for such anisotropy reduction: by using anodised aluminium or stainless steel tapes co-wound with the 2G-HTS tapes. For all the analysed coils, critical current distribution, minimum quench energy values and both tangential and radial quench propagation velocities at different temperatures and currents are reported and compared with the results of similar coils co-wound with polyimide (Kapton®) tapes.This work was supported by the Spanish Ministerio de Economía y Competitividad and the European FEDER Program (Projects MAT2011-22719 and ENE-2014-52105-R), and by the Gobierno de Aragón (research group T12).Peer reviewe

    Equatorial Disturbance Dynamo Vertical Plasma Drifts Over Jicamarca: Bi‐Monthly and Solar Cycle Dependence

    Get PDF
    We use extensive incoherent scatter radar observations from the Jicamarca Radio Observatory to study the local time and bi‐monthly dependence of the equatorial disturbance dynamo vertical plasma drifts on solar flux and geomagnetic activity. We show that the daytime disturbance drifts have generally small magnitudes with largest values before noon and an apparent annual variation. Near dusk, they are downward throughout the year with largest values during the equinoxes and smallest during June solstice. These downward drifts increase strongly with solar flux, and shift to later local times. They also increase with increasing geomagnetically active conditions with no apparent local time shift. The equinoctial evening downward disturbance drifts are larger during the autumnal equinox than during the vernal equinox. The nighttime disturbance drifts are upward and have small seasonal and solar cycle dependence but increase strongly with geomagnetic activity, particularly in the late night sector. Our results are in general agreement with those from previous theoretical and experimental studies, except near dusk where our results show much stronger seasonal and solar cycle dependence

    Endangered Lupinus mariae-josephae species: conservation efforts

    Full text link
    A lupin endemism, Lupinus mariae-josephae (Lmj), singularly has been identified in the Valencia province, in Eastern Spain. This lupin thrives in alkaline-limed soils with high pH, a unique habitat for lupins, from a small area in Valencia region. In these soils, Lmj grows in just a few small, defined patches, and previous conservation efforts directed towards controlled plant reproduction have been unsuccessful. This lupin was thought to be extinct in Valencia until 2007, when it was discovered in a limestone patch. The reasons behind Lmj endangered status are presently unknown. This study will focus on the symbiosis between Lmj and rhizobia, and how this relationship might impact the population size of Lmj. We have previously shown that Lmj plants establish a specific root nodule symbiosis with bradyrhizobia present in those soils, and we reasoned that the paucity of these bacteria in soils might contribute to the lack of success in reproducing plants for conservation purposes
    corecore