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Abstract

We construct a oneloop effective metric describing the evaporation

phase of a Schwarzschild black hole in a spherically symmetric null

dust model. This is achieved by quantising the Vaidya solution and by

chosing a time dependent quantum state. This state describes a black

hole which is initially in thermal equilibrium and then the equilibrium

is switched off, so that the black hole starts to evaporate, shrinking to a

zero radius in a finite proper time. The naked singularity appears, and

the Hawking flux diverges at the endpoint. However, a static metric

can be imposed in the future of the endpoint. Although this endstate

metric cannot be determined within our construction, we show that it

cannot be a flat metric.
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1 Introduction

The twodimensional dilaton gravity models turned out to be very useful

toy models of black hole formation and evaporation [1]. Their relevance for

4d black holes comes from the fact that the spherically symmetric scalar

field collapse can be described by a 2d dilaton gravity action

S =
1

2

∫

drdt
√−ge−2φ

[

(

R+ 2 (∇φ)
2 + 2e2φ

)

− 1

2
G

N
∑

i=1

(∇fi)
2

]

, (1.1)

where G is the Newton constant and the 4d line element ds4 is related to

the 2d line element ds by

ds4
2 = ds2 + e−2φd2 . (1.2)

R is the 2d scalar curvature associated with the 2d metric gµν , φ is the

dilaton field and fi are N matter scalar fields. These fields depend only

on time t and radial coordinate r, while the angular dependence resides in

d2. The spherically symmetric collapse was studied by several authors [2],

and the problem of determining a semiclassical metric which includes the

backreaction of the Hawking radiation is still unsolved. This is related to

the fact that the classical equations of motion are not solvable. In contrast

to this, a string theory inspired 2d dilaton gravity model [3]

S0 =
1

2

∫

d2x
√−g

[

e−2φ
(

R+ 4 (∇φ)
2 + 4λ2

)

− 1

2

N
∑

i=1

(∇fi)
2

]

, (1.3)

is classicaly solvable, and its solution describes a formation of a 2d black

hole. The quantization of (1.3) is made simpler by the fact that the matter

fields propagate freely [6, 7, 8, 9, 10, 11, 12, 13], so that the oneloop [14,

15, 10], and the twoloop [16] effective metrics were obtained. Therefore

one can study analytically the backreaction effects in this 2d model.

In this paper we are going to study a more realistic 2d dilaton gravity

model, which will have some of the nice features of (1.3) but it is going to

describe a 4d black hole. We will study

S =
1

2

∫

d2x
√−g

[

e−2φ
(

R+ 2 (∇φ)
2 + 2e2φ

)

− G

2

N
∑

i=1

(∇fi)
2

]

, (1.4)

whose 4d interpretation is that of a selfgravitating spherically symmetric

nulldust cloud. When compared to the action (1.1), one notices that a
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simplifying feature of (1.4) is that the matter fields do not couple to the

dilaton, so that one obtains freefield matter equations of motion in the

conformal gauge, in analogy to the action (1.3). This means that the task

of determining the backreaction in the model (1.4) is going to be simpler

than in the model (1.1). Still, the quantization of (1.4) is complicated by

the fact that the general solution of the equations of motion is not known.

However, in a special case when

ds2 = −
(

1 − 2m (v)

r

)

dv2 + 2dvdr , (1.5)

where exp(−φ) = r, G = 1, the classical solution for fi = fi(v) is given by

dm(v)

dv
= Tvv(v) =

1

2

N
∑

i=1

(

df i

dv

)2

, (1.6)

which is the wellknown Vaidya solution [17]. It describes a collapse of

a spherically symmetric nulldust cloud. The equations (1.5) and (1.6)

will be the starting point for our quantization procedure, from which we

will determine an effective metric describing the oneloop backreaction

effects. Note that the backreaction effects in the model (1.4) have been

studied in [4, 5] where the oneloop backreaction has been modeled by

adding a PolyakovLiouville term to the action (1.4). However, the resulting

equations of motion are not solvable, and only a numerical study has been

done.

In this paper we will perform an operator quantization of the equa

tions (1.5) and (1.6), so that an explicit expression for a oneloop effective

metric will be obtained. This metric will describe the evaporation of a

Schwarzschild black hole which was initially in a thermal equilibrium

state. This is achieved by using a quantization formalism developed in

[10, 11], and by using the idea of thermal bath removal [18], which was

developed in the case of the 2d model (1.3). We first show that the idea

of thermal bath removal can be naturally formulated in the operator for

malism, where it corresponds to the introduction of a time dependence in

the Heisenberg quantum state of the system. This time dependence can

be attributed to the external forces which switch off the thermal equilib

rium. Then we implement this idea to the model (1.4) and obtain a oneloop

metric whose properties we study.
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2 Operator formalism and thermal bath removal in

the CGHS model

The general solution of the classical equations of motion following from

(1.2) in the conformal gauge ds2 = −e2ρdx+dx− are (up to constant shifts

in the x± coordinates)

e−2ρ = e−2φ = −λ2x+x− − F+ − F− +
M

λ
, (2.1)

fi = fi+
(

x+
)

+ fi−
(

x−
)

, (2.2)

where

F± =

∫ x± ∫ x±

T±±(x+) , (2.3)

and T±± = 1
2
(∂±f)2. M/λ is an integration constant, and the residual

conformal invariance has been fixed by the socalled "Kruskal" gauge ρ = φ.

From the expressions (2.1), (2.2) and (2.3) it is clear that the indepen

dent degrees of freedom are those of the matter fields. Therefore a reduced

phase space (RPS) quantization should give a physical Hilbert space which

coincides with the Hilbert space of massless scalar fields propagating on a

flat background [7, 10]. As far as the problem of diffeomorphism anomalies

is concerned, it is formally avoided in the RPS quantization, although it

may be hidden in the noncovariant form of the gaugefixed theory. How

ever, an anomalyfree Dirac quantization of the CGHS model gives the

same physical Hilbert space as the RPS quantization [13], which guran

tees the diffeomorphism invariance of the RPS results. The dynamics is

generated by the freefield hamiltonian of N massless scalar fields, and

therefore the quantum evolution is unitary. The effective metric is de

termined by ds2 = −
〈

e2ρ
〉

dx+dx−. The effective conformal factor can be

evaluated perturbatively by using a matterloop expansion [10, 11], so that

at the oneloop order one obtains

e−2ρ1 = 〈ψ0| e−2ρ |ψ0〉 = −λ2x+x− − 〈F+〉 − 〈F−〉 +
M

λ
, (2.4)

where now F± are operator valued expressions (2.3) in the Heisenberg pic

ture. The initial state |ψ0〉 can be chosen to be a coherent state eA+ |0σ+〉 ⊗
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|0σ−〉, corresponding to a leftmoving pulse of matter, where σ± are asymp

totically flat dilaton vacuum coordinates
(

λx± = ±e±λσ±
)

and |0σ+〉⊗ |0σ−〉
is the corresponding vacuum. If the normal ordering in T± is chosen to be

with respect to the Kruskal vacuum |0x+〉 ⊗ |0x−〉, then [11]

〈ψ0|T++ |ψ0〉 = − N

48π (x+)
2

+
1

2
(∂+f )

2 , 〈ψ0|T−− |ψ0〉 = − N

48π (x+)
2
,

(2.5)

where we have chosen the conventional normalization of the flux [19], so

that there is no a factor of 1/π in (1.3). The expression (2.4) then gives

an evaporating black hole solution corresponding to the oneloop effective

action of [15]

S = S0 −
N

96π

∫

d2x
√−gR⊔⊓−1R− N

24π

∫

d2x
√−g

(

Rφ− (∇φ)
2
)

. (2.6)

Note that one can consider a different process of black hole evaporation,

if a different initial state is chosen. Instead of the boundary conditions (2.5),

which correspond to the gravitational collapse situation, one can consider

an evaporation process where initially one has a black hole in thermal

equilibrium and at x+ = x+

0 the incoming thermal flux is switched off [18].

This process can be described by the boundary conditions

〈T++〉 = − N

48π (x+)
2
θ
(

x+ − x+

0

)

, 〈T−−〉 = 0 . (2.7)

It is not difficult to see that the boundary conditions (2.7) correspond to the

following state |0〉

|0〉 = θ(x0
+ − x+) |0x+〉 ⊗ |0x−〉 + θ(x+ − x0

+) |0σ+〉 ⊗ |0x−〉 . (2.8)

A novel feature of (2.8) is that the Heisenberg state |0〉 now depends on

time, which reflects the nature of the new process where an external force

has to be used in order to do the switching. It follows from (2.8) that

〈T σ+σ+〉 =
Nλ2

48π
θ(x0

+ − x+) , 〈T σ−σ−〉 =
Nλ2

48π
, (2.9)

where the normal ordering in Tσ±σ± is with respect to the dilaton vacuum,

so that the incoming constant thermal flux has been switched off.

The oneloop solution for x+ > x+

0 is now given by

e−2φ = −λ2x+
(

x− +
)

− N

48π
log

(

x+

x+

0

+ 1

)

+
M

λ
, (2.10)
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where = −N/48πλ2x+

0 . The asymptotically flat coordinates σ̃± at the

future nullinfinity are given by

σ̃+ = σ+ , e−λσ̃−

= e−λσ− − λ . (2.11)

The first relation in (2.11) is consistent with the choice (2.8), since it implies

that for x+ > x+

0 there is no incoming flux at the past nullinfinity, i.e.

〈Tσ̃+σ̃+〉 = 0 .

The second relation in (2.11) implies that the Hawking flux is the same as

the initial thermal flux, i.e.

〈Tσ̃−σ̃−〉 =
Nλ2

48π
. (2.12)

It is not difficult to see that, due to the Hawking radiation, the apparent

horizon shrinks and meets the curvature singularity in a finite proper

time. The evaporating solution can be continuously matched to a static

solution on the null line x− = x−int. This solution coincides with the remnant

geometry of [15], which appears in the evaporation process initiated by a

gravitational collapse. Therefore this 2d example confirms the intuition

that the basic features of the evaporation process do not depend on the way

how the black hole was created.

3 Oneloop analytic model for Schwarzschild black

hole evaporation

Now we apply the idea of thermal bath removal to the model (1.4). The main

problem which appears when trying to apply the RPS operator formalism

to the theory (1.4) is that, in contrast to the theory (1.3), we do not know

the general classical solution for an arbitrary matter energymomentum

tensor Tµν . However, if we want to describe the evaporation process of a

black hole which is initially in thermal equilibrium and then the incoming

thermal flux is switched off, the problem becomes simpler.

We start from the Vaidya solution (1.5), and in analogy with the 2d case,

we take the following state |0〉

|0〉 = θ(v0 − v) |0V 〉 ⊗ |0U 〉 + θ(v − v0) |0v〉 ⊗ |0U〉 , (3.1)
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where V = 4M exp(v/4M) and U = −4M exp(−u/4M) are the Kruskal

coordinates of the initial Schwarzschild black hole and M is its mass. Con

sistency then requires that for v < v0

〈Tµν〉 = 0 , (3.2)

which is satisfied if Tµν is normal ordered with respect to the Hartle

Hawking vacuum |0V 〉 ⊗ |0U 〉. The incoming and the outgoing flux are

constant for v < v0, and take the value corresponding to the temperature

T = (8πM)−1

〈

T̃vv

〉

=
〈

T̃uu

〉

=
N

48π(4M)2
, (3.3)

where T̃µν denotes the operator obtained by normal ordering Tµν with re

spect to the asymptotically flat coordinates (u, v). For v > v0, one obtains

〈Tvv〉 = − N

48π(4M)2
= −β/2 , 〈Tuu〉 = 0 , (3.4)

where the first equation follows from

〈Tvv〉 = 〈0v| : Tvv :V |0v〉 =

(

dV

dv

)

2 〈0v| : TV V :V |0v〉

= − N

24π

(

dV

dv

)

2DV (v) ,

(3.5)

and DV (v) = v′′′

v′ − 3
2

(

v′′

v′

)

2 is the Schwartzian derivative. The effective

metric is then obtained by taking the expectation value of the expression

(1.5), so that

〈

ds2
〉

= −
(

1 +
1

r
[βvθ(v) − rs]

)

dv2 + 2dvdr , (3.6)

where we have used (3.2), (3.4) and (1.6). rs = 2M is the Schwarzschild

radius and we have set v0 = 0. The effective metric (3.6) is of the oneloop

order since it is only a function of 〈Tµν〉 and it does not depend on 〈TµνTρσ〉
or on the higherorder energymomentum tensors correlation functions.

For v > 0 the metric (3.6) represents an evaporating black hole whose

mass is linearly decreasing with time. Such a metric was previously studied

in [20], where it was ad hoc postulated and used to describe the evaporation

phase of a black hole which was created from a vacuum. Consequently, a flat
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spacetime was chosen for v < 0, instead of the Schwarzschild spacetime.

The advantage of our approach is that the operator formalism provides

metrics which are consistent with the boundary conditions. In this way

one avoids inconsistencies which may appear due to the ad hoc nature

of the procedure used in [20]. For example, a flat metric was chosen for

v > rs/β in [20], and since the Hawking radiation is produced, one obtains

a flat spacetime with nonzero energymomentum tensor.

The line element (3.6) can be written in the conformal form (we will

omit the expectation value)

ds2 = −θ(−v)
(

1 − rs
r

)

dvdu+ θ(v)
r

z2rs

(

1 + z − 2βz2
)

dvdũ , (3.7)

where

z =
r

βv − rs
, (3.8)

and the coordinate ũ is determined from the equation

|1 − βv/rs|1/βeũ/rs = |z − z−|−A− |1 − z/z+|−A+ . (3.9)

The constants z±, A± are given by

z± =
1 ±

√
1 + 8β

4β
, A± =

1

2β

(

1 ± 1√
1 + 8β

)

. (3.10)

Note that (3.9) can be also viewed as the equation determining r = r(ũ, v).

The requirement that the conformal factor in (3.7) is continuous at v = 0

gives
ũ

rs
= −A− log

∣

∣

∣

∣

r

rs
+ z−

∣

∣

∣

∣

−A+ log

∣

∣

∣

∣

1 +
r

rsz+

∣

∣

∣

∣

, (3.11)

where

r + rs log

∣

∣

∣

∣

r

rs
− 1

∣

∣

∣

∣

= −u
2
. (3.12)

The relations (3.11) and (3.12) determine the function u = u(ũ). One can

now check that the incoming thermal flux has been removed for v > 0,

since v remains the asymptotically flat coordinate at the past null infinity

ũ→ −∞.

The scalar curvature of the effective metric is given by

R =
2

r3

(

rs − βvθ(v)
)

, (3.13)
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so that the curvature singularity is at r = 0. The apparent horizon curve

is determined by ∂vr = 0, which gives

rAH = rs − βvθ(v) . (3.14)

rAH decreases as the black hole evaporates, and the curve (3.14) intersects

the r = 0 curve at

vint = rs/β , ũint = ∞ , (3.15)

so that for v > vint a naked singularity appears, see Fig. 1.

Since the metric (3.6) is a oneloop approximation, it is valid only in the

region whereRlP
2 < 1 (since the loopexpansion of the effective metric is in

〈T n〉, which is of the order of (RlP
2)n). This gives that rAH >

√
2lP , which

is the expected Planck length cutoff. Note that if one defines a dynamical

black hole mass ME as ME = 1
2rAH , then

dME

dv
= −β/2 , (3.16)

which does not correspond to a thermal evaporation mass equation which

is given by dME

dv ∝ −M−2
E . However, because β is very small (in physical

units it is given by β = N
384π (mP/M)2 where mP is the Planck mass), the

difference between the nonthermal evaporation (3.16) and a thermal one

will be noticed only when rAH < rc ≈ 4
5
rs. Therefore the evaporation is

thermal for rAH > rc >> lP .

The Hawking flux TH can be calculated from the expression

TH = 〈0|TuF uF
|0〉 = 〈0U |TuF uF

|0U〉 = − N

24π
DuF

(U ) , (3.17)

where uF is the asymptotically flat coordinate at the future null infinity

(v = ∞). By using (3.9) one can show that as v → ∞

ds2 ≈ −2z+
A+

|z+ − z−|−A−/A+

(

βv

rs

)1−1/βA+

e−ũ/rsA+dvdũ . (3.18)

Hence the asymptotically flat coordinate uF is given by

uF = −A+rs
(

e−ũ/rsA+ − 1
)

. (3.19)

By using (3.9) and the implicit relation ũ = ũ(u) defined by (3.11) and (3.12)

one can work out the Hawking flux from (3.17)

TH = T0|x+ z−|−2A−/A+ |1 + x/z+|−2
[

1 + 4β(x+ 1 + x−1)

8



+ 4β2(x2 + 2x+ 4) − 4

A2
+

]

,

(3.20)

where x = r(ũ, v = 0)/rs = r(u, v = 0)/rs. The behavior of the flux is plotted

in Fig. 2.

For early times (ũ → −∞ or x → ∞) TH is close to the initial thermal

value

TH ≈ T0x
−4β ≈ T0 exp

(

4β log(2β) + 4β2ũ/rs
)

, (3.21)

while for the late times (ũ → ∞ or x → −z−) it diverges at the endpoint

x = −z− = 1 − 2β +O(β2) as

TH ≈ T0|x+ z−|−4β(1 + 8β) . (3.22)

This is an expected behaviour because of the presence of the naked singu

larity at the endpoint, and it is related to the fact that dME

dv 6= 0 at the

endpoint [20]. However, as the endpoint is approached, the higherorder

loop corrections become relevant, and the oneloop approximation is ex

pected to break down, so that the oneloop divergence could be removed by

the higherloop corrections. This actually happens in the CGHS case when

the two loop corrections are taken into account [16]. Therefore one can

expect that the higherloop corrections will remove the naked singularity.

4 Conclusions

Note that our metric is a selfconsistent semiclassical solution in the sense

that its Einstein tensor is proportional to 〈T µν〉 by construction. However,

our metric does not satisfy an additional requirement that the Hawking

flux is finite at the future null infinity [20]. In our case this means that the

higherorder quantum corrections become important near the endpoint. In

the 2d case, the oneloop metric of [15] satisfies the both criteria; however,

it is defined only in the weakcoupling region of the spacetime, i.e. in the

region where the higherorder quantum corrections can be neglected. Note

that in our case the flux stays very close to the thermal classical value

until very late times ũ. Therefore one could employ the BPP strategy of

9



removing the naked singularity by imposing a strongcoupling boundary

at Ũ = Ũb ≈ 0, where Ũ = −4M exp(−ũ/4M), and then in the region

Ũ > Ũb, V > Vint try to impose a static metric such that it coincides with

(3.7) at Ũ = Ũb for V > Vint. Also note that Ũ = 0 line is tangential to the

r = 0 curve at V = Vint, so that one has the same situation as in the BPP

case. The diference now is that the value of the Hawking flux is infinite at

Ũ = 0, which is problematic. This is avoided by putting the strongcoupling

boundary at Ũ = Ũb < 0.

When ũ = ũb, then

ds2 = −Cb(v)dvdũ ,

where Cb(v) = 2
(

∂r
∂ũ

)

|ũb
, so that a trivial solution in the region Ũ > Ũb,

V > Vint is

ds2 = −dũdṽ ,

where dṽ = Cb(v)dv. However, this is not a good solution because ũ 6= u and

ṽ 6= v, which means that radiation is present in the flat spacetime region

Ũ > Ũ b, Ṽ > Vint. This is no surprise, because one expects that the end

state geometry cannot be a flat space, but it should be an asymptotically flat

quantum corrected vacuum geometry, and the corresponding oneloop effec

tive action must contain additional counterterms to the PolyakovLiouville

counterterm, in analogy to the BPP case [15]. This quantum vacuum ge

ometry cannot be determined within our construction. However, it is clear

how our construction can be extended. One should find a more general class

of classical solutions than the Vaidya solutions, and then quantize them ac

cording to our approach. These classical solutions could be obtained either

approximately or by using the global symmetries of the theory [21].
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Figure I: Kruskal diagram of the oneloop geometry.
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