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Abstract 
We used Fabry-Perot Interferometer (FPI) observations at Jicamarca, Nasca and Arequipa, Peru 

from 2011 to 2017 to study the nighttime zonal and meridional disturbance winds over the 

Peruvian equatorial region. We derived initially the seasonal-dependent average thermospheric 

winds corresponding to 12 hours of continuous geomagnetically quiet conditions. These quiet-

time climatological winds, which are in general agreement with results from the Horizontal Wind 

Model (HWM14), were then used as baselines for the calculation of the disturbance winds. Our 

results indicate that the nighttime zonal disturbance winds are westward with peak values near 

midnight and with magnitudes much larger than predicted by the Disturbance Wind Model 

(DWM07). The premidnight equinoctial and June solstice westward disturbance winds have 

comparable values and increase with local time. The postmidnight westward disturbance winds 

decrease toward dawn and are largest during equinox and smallest during June solstice. The 

meridional average disturbance winds have small values throughout the night. They are 

northward in the premidnight sector, and southward with larger (smaller) values during 

December solstice (equinox) in the postmidnight sector. We also present observations showing 

that during the main and recovery phases of the April 2012 and May 2016 geomagnetic storms 

the zonal disturbance winds have much larger magnitudes and lifetimes (up to about 48 hours) 

than suggested by the HWM14. These observations highlight the importance of longer-term 

disturbance wind effects. The large and short-lived (about 2 hours) observed meridional wind 

disturbances are not reproduced by current climatological empirical models.  
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1 Introduction 
Thermospheric winds are intrinsically important upper atmospheric parameters. Their 

transport of plasma along the geomagnetic field lines affect the chemical composition of the 

Earth's upper atmosphere, and are key drivers of ionospheric electric fields. Quiet-time 

thermospheric winds are driven mainly by horizontal pressure gradients of the diurnal 

atmospheric bulge caused by the solar atmospheric heating (e.g., Rishbeth, 1972; Richmond, 

2011). The equatorial nighttime thermospheric zonal winds are closely coupled to the zonal drifts 

of the ambient plasma and of the equatorial plasma bubbles (e.g., Valladares et al., 1996; 

Martinis et al., 2003; Chapagain et al., 2013).   

Several space-based and ground-based optical interferometers have extensively been used 

to monitor the dynamics of the neutral thermosphere. Fabry-Perot Interferometer observations at 

Arequipa, Peru (16°28’ S, 71°30’ W, dip latitude ~4° S) determined the local time, seasonal and 

solar flux dependence of the nighttime equatorial thermospheric winds during geomagnetically 

quiet periods (e.g., Meriwether et al., 1986; Biondi et al., 1990, 1991, 1999). These observations 

showed that solar EUV radiation driven pressure gradients control the temporal and seasonal 

variations of the equatorial thermospheric winds. Recently, FPI thermospheric winds 

measurements have also been made in the Brazilian and African equatorial regions (Meriwether 

et al., 2011, 2016; Makela et al., 2013; Fisher et al., 2015; Tesema et al., 2017).  

Geomagnetically disturbed conditions lead to large departures of the dynamics of the 

thermosphere from its quiet-time pattern. Richmond and Matsushita (1975) first pointed out that 

geomagnetic storms generate large global equatorward propagating wind perturbations extending 

down to equatorial latitudes. Richmond (1978) and Richmond (1979a, 1979b) showed that Joule 

heating is the dominant process driving global thermospheric changes capable of reaching low 

latitudes. The storm-time wind circulation drives ionospheric disturbance dynamo electric fields 

and currents (Blanc & Richmond, 1980) that can strongly affect the middle and low latitude 

plasma motion and density, and the occurrence of equatorial spread F (Fejer et al., 1999). 

National Center for Atmospheric Research Thermosphere Ionosphere Electrodynamics General 

Circulation Model (NCAR/TIEGCM) simulations suggest that storm driven winds can have 

lifetimes of up to about 8 days at equatorial regions (Huang et al., 2005). 
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Several studies investigated the dynamics of the middle and low latitude geomagnetic 

activity driven disturbance winds using Upper Atmosphere Research Satellite (UARS) Wind 

Imaging Interferometer (WINDII) measurements (e.g., Fejer et al., 2000; Emmert et al 2001, 

2002, 2004).  These studies showed that low latitude and equatorial nighttime zonal disturbance 

winds are westward with peak values around 03 magnetic local time, and have small seasonal 

dependence. Emmert et al. (2008) used extensive satellite and ground-based wind measurements 

to derive the global empirical climatological Disturbance Wind Model (DWM07). In a 

companion paper, Drob et al. (2008) presented the Horizontal Wind Model07 (HWM07), which 

has both a quiet-time global wind model for the background state and the DWM07. The HWM07 

provides spatial, temporal and geomagnetic activity (Ap) dependent thermospheric wind 

predictions. More recently, Drob et al. (2015) presented the HWM14, which consists of an 

updated quiet-time wind component and the DWM07. The combined HWM14 model also 

provides height, local time and latitude dependent predictions of the thermospheric winds as a 

function of the local Ap index.  

Challenging Minisatellite Payload (CHAMP) satellite observations indicate that 

longitudinal averaged equatorial zonal disturbance winds are westward with small values during 

the day, and are largest near midnight, except during June solstice when they are largest around 

03 LT (Xiong et al., 2015). These disturbances occur about 3-4 hours after the magnetospheric 

disturbances and last about 24 hours or longer, which is consistent with model results presented 

by Richmond and Matsushita (1975) and Blanc and Richmond (1980). CHAMP and Republic of 

China Satellite-1 (ROCSAT-1) satellite observations presented by Xiong et al. (2016) suggested 

that prompt penetration electric fields, due to sudden changes in the magnetospheric convection 

(e.g., Fejer, 2011), produce additional zonal disturbance winds that are westward in the afternoon 

sector and eastward in the post-midnight sector. 

So far, few studies have examined the response of low latitude thermospheric winds to 

large geomagnetic storms. Emery et al. (1999) studied the thermospheric response to the 

November 1993 storm using TIEGCM along with the Assimilative Mapping of Ionospheric 

Electrodynamics (AMIE) procedure, which included data of 154 ground magnetometers and ion 

drift and electron precipitation measurements. These simulations showed traveling atmospheric 

disturbances reaching equatorial latitudes about 4 hours after the large high latitude energy 

depositions, and largest equatorial westward disturbances around 22 LT for all longitudes. 
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WINDII observations during the recovery phase of the October 1998 storm showed large 

latitudinal variability on the daytime disturbance winds, which reversed from westward to 

eastward at magnetic latitudes of about 30°, and largest disturbance winds at F-region heights 

(Fejer & Emmert, 2003). FPI observations from Arequipa showed reductions in the nighttime 

eastward and poleward winds 24 hours after the onsets of the August 1998 and October 2000 

geomagnetic storms (Meriwether et al., 2013). Most recently, Malki et al. (2018) reported strong 

zonal and meridional thermospheric winds perturbations in the westward and equatorward 

directions around midnight over the northern African sector (31.2°S, 7.8°W, magnetic latitude 

~23°N) 6 hours after the onset of the 27-28 February 2014 storm. These results are consistent 

with predicted delays in the establishment of a steady storm-driven circulation pattern (e.g., 

Richmond & Matsushita, 1975; Blanc & Richmond 1980).  

We used extensive observations from recently deployed FPIs in the Peruvian equatorial 

region sector to examine for the first time the local time and seasonal dependence of the 

nighttime disturbance winds. In the following sections, we will first describe our database and 

determine our quiet-time baselines used to calculate the disturbance winds. Then, these baseline 

winds are compared with the corresponding quiet-time winds from HWM14. Next, we present 

our season-dependent disturbance wind patterns and compare them with results from the 

DWM07, which has been extensively used in storm-time wind studies (e.g., Malki et al., 2018). 

We also examine the dependence of the zonal disturbance winds on both local and extended 

levels of geomagnetic activity. Finally, we present measurements during and shortly after two 

geomagnetic storms showing that zonal disturbance winds are more accurately accounted for 

using multi-hour geomagnetic activity parameters (e.g., time-averaged Kp indices) than local 

disturbance parameters.  

2 Measurement technique 

Equatorial thermospheric winds are routinely monitored from FPI sites at Jicamarca 

(11°57’ S, 76°51’ W, dip latitude ~0°), Nasca (14°58’ S, 74°53’ W, dip latitude ~2.5° S) and 

Arequipa (16°28’ S, 71°30’ W, dip latitude ~4° S), since 2009, 2011 and 1984, respectively. 

These probes measure the 630 nm airglow Doppler-shifted emission line along specific line-of-

sight directions. Starting in 2011, the FPI pointing directions have generally been cycled to 

provide the best sampling of the surrounding area in the central region of Peru. Figure 1 shows 
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the locations of the FPIs and their line-of-sights. The integration time is typically about 5 min for 

a single direction, and the complete cycle time is about an hour. A 632.8 nm HeNe laser 

observation is included at the beginning of each cycle with an integration time of 30 seconds to 

monitor instrumental drift. The etalon clear aperture and spacer gap for both Jicamarca and 

Nasca FPIs are 70 mm and 1.5 cm respectively, and 100 mm and 1 cm for Arequipa FPI. The 

optical design of the Jicamarca and Nasca FPIs is similar to MiniME FPI in the RENOIR 

network (e.g., Makela et al., 2009; Meriwether et al., 2011). The Arequipa FPI was described by 

Meriwether et al. (2008). 

The signal recorded on every pixel of the FPI image is analyzed as the exposure of a 

Gaussian airglow source to the instrument transfer or Airy function. Following Harding et al. 

(2014), this signal is modeled by the Fredholm integral equation of the first kind between a 

modified Airy function and the Gaussian spectrum of the oxygen line source. The modified Airy 

function includes an intensity quadratic fall off factor and is blurred by a point-spread function to 

account for different deviations from the ideal Airy function like the radially decreasing action of 

the optical transmission among other optical aberrations (e.g., Meriwether et al., 2008). Since the 

laser has a known spectrum, the images are used to estimate different parameters of the 

instrumental function such as the etalon spacer gap, reflectivity, and optical magnification 

constant. These laser images are useful for calibration purposes and for monitoring the drift of 

the instrumental parameters along the night. These parameters are later used to estimate airglow 

parameters such like the Doppler frequency shift and broadening. More details on this method 

are found in Harding et al. (2014).  

The line-of-sight wind velocities were calculated using the procedure described by 

Makela et al. (2013) and Meriwether et al. (2016) where the laser calibration images from 21-02 

LT are used to get the best zero Doppler shift reference under the assumption of zero average 

vertical wind. This is a less restrictive assumption than that of zero instantaneous vertical wind 

used in past (Harding et al., 2014). As pointed out by Harding et al. (2015), the smoothest wind 

field can be estimated over a regional grid from a set of line-of-sight velocities considering that 

each of these velocities is the projection of the thermospheric wind over that particular direction. 

The optimal solution of the resultant underdetermined linear system imposes minimum 

roughness of the wind field. The roughness metric used in this regularization is expressed in 
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terms of the discrete approximation of the curvature and gradient operators. This way the 

smoothest solution is found when the roughness is minimum (Harding et al., 2015). A minimum 

of 8 observations was set up to enable this process and they were linearly interpolated in time to 

obtain a wind map field every 15 minutes on a 11x11 grid. This estimation was performed only 

for the horizontal wind components. Figure 1 shows the estimated wind map field at ~23:45 LT 

during 16th May 2013, for an assumed emission height of 250 km, obtained from 18 line-of-sight 

measurements.  

 

Figure 1. Estimated wind field map over central Peru for 16th May 2013 around midnight 
(~23:45 LT). The filled circles show the Jicamarca (blue), Nasca (red) and Arequipa (green) FPI 
locations; and the open circles show the sampling points for a 250 km altitude according to 
predetermined line-of-sight directions. Solid and dashed curves show the magnetic equator and 
the 8°S dip latitude, respectively. 

By using the wind field estimation, we found that the zonal and meridional wind 

velocities over the FPI sites differed by less than about 5 m/s on average. Therefore, we 

combined the horizontal winds over the FPI site to improve the statistical significance of our 

results. The overall average thermospheric wind velocities were calculated from the estimated 

wind velocities over each FPI site using, 
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where 𝑤 and 𝜎 are the eastward (northward) wind velocity and its corresponding estimated 

uncertainty over each FPI site, and 𝑤"  and 𝜎)"  are the average eastward (northward) wind velocity 

and the uncertainty of the mean velocity, respectively. 

Each instrument recorded a total of ~15000 hours since 2009. However, this method 

requires high-quality conditions for most of the line-of-sights, and so we used 5946 hours of 

estimated wind fields from June 2011 to December 2017 with 15 measurements per hour on 

average. Since the December solstice measurements before 23 LT had generally larger errors, 

they were not studied. This dataset was analyzed on bimonthly bins but most of the results 

presented consist of 4-months seasonal averages. Table 1 shows the seasonal distribution of the 

number of hours available within this range. This database has the largest number of 

observations during June solstice and the smallest in December solstice, mostly due to the high 

presence of clouds during local summer. The December measurements were generally reliable 

only after about 23 LT.    

Number of 
Hours NOV-FEB MAR-APR 

SEP-OCT MAY-AUG 

𝑲𝒑 ≤ 𝟑 646 1930 2501 
𝑲𝒑 > 𝟑 94 498 277 

Table 1. Seasonal Distribution of the 15-min averaged Wind Field Database. 
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3 Results 

3.1 Quiet-time average winds  

We have derived initially bimonthly averaged geomagnetically quiet-time climatological 

wind patterns using various Kp-based criteria varying from local quiet (Kp< 3 −) to very 

extended quiet (all Kps< 3 − over 48 hours) conditions. For most to the nighttime, the change in 

the magnitude of the zonal winds was smaller than 5 m/s. Therefore, we have chosen our 

reference quiet-time winds to correspond to all Kps< 3 − over 12 hours. In this study, our quiet-

time wind patterns consist of 4-month season averages.  

Figure 2 shows the seasonal dependence of our half-hour averaged quiet-time zonal and 

meridional winds and the corresponding results from the HWM14. The average solar flux ranged 

from 105 to 120 solar flux units (sfu), for equinox and June solstice and from 125 to 135 for 

December solstice, and the average Kp ranged from 0.7 to 1.1. The standard deviations vary 

from about 15 to 25 m/s for the zonal winds and from about 12 to 20 m/s for meridional winds. 

The HWM14 winds were first evaluated at each FPI location for an altitude of 250 km and zero 

geomagnetic activity level (Ap=0) every half-hour and then averaged to get an overall model 

prediction. The variability of the model results, calculated from the standard deviations of each 

half-hour bin, is shown as the shaded areas. This variability is largest during equinox and for the 

meridional winds.   
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Figure 2. Seasonal variation of equatorial thermospheric winds under 12-hours of extended 
geomagnetic quiet conditions and the corresponding quiet-time predictions from the HWM14. 
The error bars and shadowed regions correspond to the standard deviations. 

Figure 2 shows that for moderately low solar flux conditions our quiet-time zonal winds 

are eastward with peak values of about 115 m/s at about 22 LT and decrease toward dawn. The 

June solstice and equinoctial nighttime meridional winds are southward in the early night with 

decreasing magnitudes. The equinoctial meridional winds reverse to northward at about 21 LT, 

have a peak value of about 25 m/s near 22.5 LT, and then decrease up to about 01 LT. They have 

very small magnitudes in the late-night sector. The June solstice meridional winds decrease from 

the early night period up to about 23 LT and have small values in the postmidnight period. The 

December solstice meridional winds have nearly constant northward values of about 15 m/s from 

about midnight to 05 LT. The average wind patterns shown in Figure 2 are similar to those 

reported in previous equatorial studies (e.g., Biondi et al., 1990, 1999; Meriwether et al., 2016). 

They are also in general agreement with the predictions from the HWM14, which is expected 
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since a large database of Peruvian FPI measurements was used in the development of this model. 

However, there are also noticeable differences between the FPI and the model results. In 

particular, the model significantly underestimates the eastward winds in the premidnight sector 

and the early night southward winds during equinox, and also significantly overestimates the 

northward meridional wind during December solstice in the postmidnight sector, as seen from 

Figure 2. Some of the differences between the HWM14 and the Peruvian FPI data were already 

reported by Drob et al. (2015) and Meriwether et al. (2016). We will later show that the large 

underestimates of the quiet-time eastward winds result in significant underestimates of the 

disturbed zonal winds by the HWM14.  

3.2 Average disturbance winds 

Middle and low latitude thermospheric winds can be severely disturbed by geomagnetic 

storm-driven enhanced energy and momentum input into the high latitude ionosphere. Figure 3 

shows the local time and seasonal dependence of our thermospheric winds for Kp>3 

geomagnetic conditions, and the corresponding predictions from the HWM14. In this case, the 

average solar flux ranged from 105 to 125 sfu for all seasons and the average geomagnetic 

activity levels ranged from 3.9 to 4.3. The standard deviations shown as bars vary from 10 to 30 

m/s for the zonal winds and from 12 to 25 m/s for the meridional winds. The HWM14 

predictions were evaluated including its disturbance component, provided by the DWM07 

(Emmert et al., 2008), at each FPI location for an altitude of 250 km, for a geomagnetic activity 

level of Ap=25 to correspond to the same average level of geomagnetic activity as the FPI winds 

(Kp≈4.1) and averaged to get the full HWM14 prediction.  
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Figure 3. Seasonal comparison of disturbed equatorial thermospheric winds for local 
geomagnetic conditions i.e. Kp>3, and corresponding predictions from the HWM14 evaluated 
for Ap=25. The error bars and shadowed regions correspond to the standard deviations.  

Figure 3 shows generally a much better agreement between the FPI and the HWM14 

disturbed winds than between their quiet-time values. The FPI and the HWM disturbed eastward 

winds presented in Figure 3 are about 25 m/s and 10 m/s smaller than their corresponding quiet-

time values shown in Figure 2, respectively. This difference is the result of the smaller quiet-time 

eastward winds predicted by the HWM14. As in the quiet-time case, the FPI and HWM 

meridional disturbed winds are generally in good agreement except for the equinox early night 

and December solstice late night periods. 

Figure 4 compares our extended quiet-time seasonal patterns shown in Figure 2 and the 

local disturbed (Kp>3) seasonal averaged winds shown in Figure 3. As mentioned before, these 

patterns are half-hourly averages for the corresponding geomagnetic conditions. The standard 

errors of the means are about 1 m/s and 3 m/s for the extended quiet-time and local disturbed 
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patterns respectively. Figure 4 indicates that the average zonal disturbance winds are nearly 

season-independent in the premidnight sector for equinox and June solstice and largest during 

equinox in the postmidnight period. The meridional disturbed winds are slightly more northward 

in the premidnight sector for equinox and June solstice and more southward in the postmidnight 

sector for December and June solstices.  

 

Figure 4. Comparison of 12-hours extended quiet and local disturbed thermospheric winds over 
Peru.  

Figure 5 shows in more detail the local time and seasonal variations of the FPI 

disturbance winds presented in Figure 4, and the corresponding results from the seasonal-

independent DWM07 (Emmert et al., 2008). The corresponding 12-hours extended quiet-time 

seasonal baselines were removed and the resultant disturbances were averaged in local time and 

season. The average geomagnetic activity enhancement, ∆𝐾𝑝, ranged from 3.1 to 3.3. The 

standard deviations are ~15 m/s most of the night, except in the early night period when they are 
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about 25 m/s, and the error bars indicate the standard errors of the means, which are generally 

about 2 m/s. The DWM07 predictions, shown as solid black lines, were evaluated at the FPI 

locations for an altitude of 250 km, for a geomagnetic activity level of Ap=25, which 

corresponds to an enhancement of ∆Kp=3.2 over the geomagnetic quiet level of 〈Kp〉=0.9, and 

averaged to get a single prediction from this model.  

 

Figure 5. Local time and seasonal comparisons of FPI disturbance winds (Kp>3) with 
predictions from the DWM07 for geomagnetic activity enhancement of ∆Kp=3.2 (Ap=25). The 
error bars correspond to the standard errors of the means. 

Figure 5 shows that the FPI equinoctial and June solstice zonal disturbance winds have 

comparable values in the premidnight sector where they increase with local time and that they 

reach their largest magnitudes around midnight. The postmidnight zonal disturbance winds are 

largest (smallest) during equinox (June solstice) and decrease toward dawn at all seasons. The 

DWM07 predicted zonal disturbance winds have much smaller magnitudes than the FPI 

disturbance winds, except in the late-night period near the time of its peak value. As noted 

earlier, this is partly due to the HWM14 smaller quiet-time eastward winds. The meridional 

disturbance winds are very small at all seasons, as already shown in Figure 4. The FPI 

equinoctial and June solstice meridional disturbance winds are northward with comparable small 

values in the premidnight sector and have peak values near dusk. In the postmidnight sector, they 
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are southward with largest values during December solstice and smallest during equinox. The 

DWM07 meridional disturbance winds are southward with generally much smaller values than 

the FPI disturbance winds.  

3.3 Extended geomagnetic activity effects  

The low latitude thermosphere and ionosphere are strongly affected for periods from few 

hours to few days by storm-time enhanced energy deposition into the high latitude ionosphere 

(e.g., Blanc and Richmond, 1980; Fuller-Rowell et al., 1996). We have studied the relationships 

of the Peruvian FPI disturbance winds for extended periods of geomagnetic activity using up to 

about 12-hour averaged Kp values. The best estimates of the zonal disturbance winds were 

obtained using for 9-hour averaged Kp averages, but similar results were also obtained using 

slightly longer Kp averages. The meridional disturbances were not improved using Kp averages. 

Since meridional wind disturbances can have shorter lifetimes, they can be estimated best using 

shorter-term disturbance parameters such as hourly AE and polar cap indices. These parameters 

would also improve the prediction of zonal disturbance winds by taking time delay effects into 

account. 

Figure 6 shows the equinoctial zonal disturbance winds for local and 9-hours of 

continuously high geomagnetic activity level. These averages were calculated following the 

same procedure as for the seasonal disturbances shown in Figure 5. The averages of the local and 

9-hours enhanced geomagnetic activity levels ranged from 3.4 to 3.6. As expected, Figure 6 

indicates that extended period of geomagnetic activity leads significant increase in the magnitude 

of the disturbance winds, particularly in the postmidnight period, even though the average 

geomagnetic activity levels are about the same. They show that for a geomagnetic activity level 

of Kp≈4.4 the zonal disturbance winds around midnight and in the postmidnight sector increase 

by ~8 m/s from local to 9-hours of steady disturbed conditions. Basically, same results were 

obtained for June solstice. The average meridional disturbance winds derived from local and 

extended disturbance conditions turned out to be essentially identical and, therefore, are not 

shown.   
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Figure 6. Comparison of equinoctial disturbance eastward winds under local and extended 
geomagnetically active conditions. The error bars correspond to the standard errors of the means. 

We have seen that the HWM14, which includes the disturbance component from the 

DWM07, gives reasonably good thermospheric wind estimates over Peru during 

geomagnetically active times even though both its quiet and disturbance components are less 

accurate. We will see below that these limitations become more severe during and shortly after 

large geomagnetic storms when the storm time winds depend strongly also on past geomagnetic 

activity levels. The importance of extended periods of enhanced geomagnetic activity is also 

evident in storm-time equatorial plasma drifts (e.g., Scherliess & Fejer, 1997; Fejer et al., 2005). 

In the next section, we will compare Peruvian thermospheric measured winds during and shortly 

after the 23-26 April 2012 and 07-10 May 2016 long-lasting geomagnetic storms with 

predictions from the HWM14 and from a simple empirical disturbance model.  

3.4 Case Studies 

Figure 7 shows the March-June zonal disturbance winds corresponding to 9-hours of 

enhanced geomagnetic activity, which was determined following the procedure described earlier. 

This extended disturbed wind pattern is similar to that shown in Figure 6 except for the slightly 
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earlier time of the peak westward wind perturbation. We used this pattern to estimate the zonal 

wind disturbance winds for our two storms by linearly scaling their values to the corresponding 

local time dependent 9-hour Kp values. Therefore, our estimated zonal disturbance winds are 

given by   

U>𝑡, ∆KpAAAA(0 − 9	hrs)I = UJ(𝑡) +
∆KpAAAA(0 − 9	hrs)

3.1 𝑑(𝑡) 

where U is the empirical zonal wind speed, 𝑡 is the local time, UJ(𝑡) is the corresponding 12-

hour quiet-time zonal wind, ∆KpAAAA(0 − 9	hrs) is the average Kp enhancement over the last 9-

hours over our quiet-time level (Kp=0.9), and 𝑑(𝑡) is the disturbance wind shown in Figure 7. 

The predicted storm-time zonal winds are obtained by adding the disturbance winds scaled from 

the values shown in Figure 7 to the corresponding extended quiet-time values. The storm-time 

meridional winds were estimated using the local Kp indices.  

 

Figure 7. Disturbance eastward winds of 9-hours extended geomagnetically active conditions for 
the March-June period. Error bars correspond to the standard errors of the means. 

Figures 8 and 9 show in the top panels the time evolution of the geomagnetic storm, as 

indicated by the Symmetric-H (SYMH), Auroral Electrojet (AE) and Kp indices. The bottom 
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panels show the zonal and meridional extended quiet-time reference winds, FPI measured zonal 

and meridional winds and the predictions from HWM14 and from our simple empirical model. 

Figure 8 shows that the main phase of the May 2016 storm lasted from ~20 LT on the 7th to 

~02:30 LT on the 8th. This was followed by a highly active period of energy injections up to ~22 

LT on the 8th. In this period, the AE indices reached values of ~1900 nT, and the Kp was about 6. 

This was followed by a long recovery phase up to about May 10th with AE values of about 500 

nT, and Kp≈2.5.  

Figure 8 shows that, following a relatively large short-lived northward wind disturbance 

at about 00:30 LT on 8 May, the zonal wind first decreased and later reversed to westward with 

disturbance winds of up to about 70 m/s. On the following night, the westward disturbance winds 

were larger than about 60 m/s from about 22 LT to 05 LT, and there was a large southward 

disturbance wind near midnight. The zonal disturbance winds decreased to about 50 m/s and 30 

m/s in the third night and fourth nights respectively and were largely confined to the 

postmidnight period. The meridional winds underwent a large short-lived postmidnight 

northward disturbance in the third night and essentially returned to their quiet time values in the 

fourth night.  

Figure 8 shows that the HWM14 largely underestimates the magnitudes of the westward 

wind perturbations in the first night, and does not account for their occurrence in the following 

nights. Our simple empirical model provides significantly better estimates of the westward 

disturbance winds, but it underestimates their peak magnitudes in the third and fourth nights. The 

HWM14 and our model provide nearly identical estimates of the storm-time meridional winds, 

which is expected, since they are both based on the local Kp values, but they do not account for 

the large short-lived meridional disturbances near midnight.  
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Figure 8. (Top) Geophysical indices during the main and recovery storm phases of the 07-10 
May 2016 geomagnetic storm. The shadowed areas indicate night-time periods. (Bottom) 
Eastward and northward quiet-time reference winds (black smooth lines), FPI observations 
(black lines with error bars), predictions from the HWM14 (blue lines) and from our empirical 
model (green lines). The error bars correspond to the standard deviations of the measured winds. 

Figure 9 shows the geomagnetic indices during the April 2012 geomagnetic storm and 

the measured and model-estimated zonal and meridional winds. The main phase of this storm 

occurred from ~13 LT to ~23 LT on 23 April, and its recovery phase lasted for about three days. 

In the main phase, the peak AE was about 1500 nT and the average Kp was close to 5+. After the 

main phase there was a relatively short quiet-time period followed by 2 days of moderately 

disturbed conditions with an average AE of about 800 nT and an average Kp of ~4.  

Figure 9 shows large (peak of about 50 m/s) westward wind disturbances starting in the 

storm main phase and extending into the following quiet-time period. In this case, the meridional 
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winds underwent large northward and southward disturbances before and after midnight, 

respectively. In the second night, there were even larger (up to about 70 m/s) westward wind 

disturbances, particularly in premidnight period, while the meridional wind had northward 

disturbances increasing toward dawn. We note, however, that the premidnight measurements on 

the second night have much larger standard deviations due to less favorable observing 

conditions. The zonal wind disturbances decreased to about 30 m/s in the third night when they 

were confined to the postmidnight sector and essentially vanished in the fourth night. The 

meridional winds were slightly disturbed in the third night and also returned to their quiet values 

in the following night. The HWM14 predictions again underestimate the westward disturbances 

in the storm main phase, and do not account for their occurrence in the following nights. Our 

model reproduces the large westward disturbances in the storm main phase, but underestimates 

their values in the following nights, particularly in the second night. Again, these models do not 

reproduce the short-lived meridional wind disturbances.    
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Figure 9. Same as Figure 8 for the 23-26 April 2012 geomagnetic storm. 

4 Discussion 

We have used multi-site FPI measurements in the Peruvian equatorial region and the 

novel data analysis technique presented by Harding et al. (2015) to determine for the first time 

the local time and seasonal dependence of the nighttime equatorial extended quiet and disturbed 

zonal and meridional winds, and compared them with predictions from HWM14 and DWM07. 

We have determined that the magnitudes of the equatorial nighttime eastward winds increase 

slightly from local to extended quiet conditions, and have used 12-hours extended quiet average 

winds as our baseline for inferring geomagnetic activity driven disturbance winds. Our extended 

zonal and meridional quiet-time climatologies are in good agreement with results from previous 

equatorial wind studies (e.g., Biondi et al., 1990, 1999; Meriwether et al., 2016), and consistent 

with quiet-time F-region zonal plasma drifts (e.g., Fejer et al., 1991, 2005). They are also in 

general agreement with predictions from the HWM14, although this model tends to 

underestimate the Peruvian nighttime eastward winds.  

We showed that the June solstice and equinoctial premidnight westward wind 

disturbances have comparable magnitudes and increase up to about midnight. Later, they 

decrease toward dawn and are largest during equinox and smallest during June solstice. The 

equinoctial and June solstice meridional disturbance winds are northward with comparable 

values in the premidnight sector and decrease monotonically from dusk to midnight where they 

reverse to southward. In the postmidnight sector, the southward disturbance winds increase 

toward dawn and have largest values during December solstice and smallest during equinox.  

Emmert et al. (2004) presented longitudinally averaged disturbance zonal winds derived 

from climatological WINDII-UARS satellite measurements with peak magnitude around 03 LT, 

and showed that this peak moves to earlier local times with increasing geomagnetic activity. The 

DWM07 also predicts nighttime westward disturbance winds over Arequipa at 03 LT (Emmert et 

al., 2008). We note, however, that the FPI derived zonal disturbance winds over Arequipa 

presented in Figure 8 of the DWM07 study have larger values at midnight than at 03 LT, 

consistent with our data. CHAMP satellite measurements showed strongest zonal wind 

disturbances around midnight during equinox and December solstice, and near 03 LT during 
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June solstice (Xiong et al., 2015). Clearly, additional studies are needed to fully characterize the 

seasonal, solar cycle, and longitudinal variations of the equatorial disturbance winds.  

We have seen that the DWM07 significantly underestimates, particularly near midnight, 

the magnitude of the nighttime zonal disturbance winds. Thermospheric wind measurements 

over the North African low latitude region during the 27-28 February 2014 storm showed that 

the DWM07 also significantly underestimated the nighttime westward disturbance winds near 

midnight (Malki et al., 2018). Our simple empirical model provides improved estimates of the 

storm-driven zonal perturbations for the two geomagnetic storms considered above. This is 

especially the case in the early phases of the storms. The model predictions for nights after the 

main phases could be improved by introducing a longer-term disturbance parameter. Fejer et al. 

(2005) showed that large westward postmidnight F-region disturbance dynamo drifts are also 

associated with time delays of about 15-24 hours after enhanced geomagnetic activity. Our 

database is not extensive enough for determining the possible effects of these longer-term 

disturbance parameters. The DWM07 and our model give reasonable estimates of the average 

meridional disturbance winds, but are unable to account for short-term disturbances; which are 

probably associated with large-scale trans-equatorial travelling atmospheric disturbances 

originated by energy depositions at polar regions with time delays of about 4 to 6 hours (Xiong 

et al., 2015; Zhang et al., 2017; Malki et al., 2018). The use of shorter-term disturbance 

parameters would also improve the prediction of both zonal and meridional disturbance winds by 

taking time delay effects into account. 

5 Summary and conclusions 

We have presented the first study of the local time and seasonal dependence of the 

nighttime equatorial disturbance winds over Peru. These disturbance winds are westward with 

largest magnitudes around midnight and strong seasonal dependence in the postmidnight period. 

The equinoctial and June solstice premidnight meridional disturbance winds are northward and 

have comparable magnitudes. In the postmidnight sector, they are southward with larger values 

during December solstice and smallest during equinox. The DWM07 significantly 

underestimates the magnitudes of the nighttime equatorial zonal disturbance winds over Peru, 

particularly close to midnight. The zonal disturbance winds cannot be accurately predicted using 

only local disturbance parameters such as the 3-hour Kp indices. Time extended disturbance 
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effects are particularly important during recovery phases of geomagnetic storms when significant 

postmidnight disturbance winds can last longer than 48 hours after storm main phases. The short-

lived equatorial meridional disturbance winds cannot be accounted for with current empirical 

models.      
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