28 research outputs found

    The professor in the Service-Learning: explanatory variables

    Get PDF
    Texto en inglĂ©s e españolLa metodologĂ­a del aprendizaje-servicio es una de las mĂĄs adecuadas para adaptarse a los cambios y a los nuevos retos sociales y educativos en el espacio universitario. Se trata de un enfoque que promueve un aprendizaje de tipo experiencial en el que el protagonismo no estĂĄ en el profesorado sino en quienes ofrecen y en quienes reciben el servicio. Las razones para proponer esta metodologĂ­a en las aulas universitarias son muy variadas, y tienen que ver con la mejora de los procesos educativos, la formaciĂłn Ă©tica y ciudadana del alumnado, asĂ­ como con la mejora de los vĂ­nculos existentes entre universidad y sociedad. Concretamente, nuestro objetivo en este trabajo es analizar cuĂĄles son las variables que explican que un profesor universitario introduzca la metodologĂ­a de aprendizaje-servicio en su quehacer docente. MetodologĂ­a: Con este propĂłsito,hemos llevado a cabo un estudio con 1903 docentes de 6 universidades españolas a los que se les ha aplicado el “Cuestionario sobre PrĂĄctica docente y Actitud del profesorado universitario hacia la InnovaciĂłn” (CUPAIN). Resultados: Con los datos obtenidos realizamos una regresiĂłn logĂ­stica con la finalidad de estimar la probabilidad de que un profesor universitario utilice o no el aprendizajeservicio segĂșn variables sociodemogrĂĄficas (sexo, edad, tipo de materia, alumnos matriculados, situaciĂłn administrativa, experiencia, ciclo), la prĂĄctica docente, el acuerdo con el compromiso social de la universidad y el interĂ©s por prĂĄcticas docentes innovadoras; y, posteriormente, un anĂĄlisis de varianza multivariado (MANOVA) 5 X 2, y una prueba chi-cuadrado. DiscusiĂłn y conclusiones: El anĂĄlisis de los datos nos permite concluir que de todas las variables analizadas la que mejor predice el empleo del ApS por parte de los docentes es su acuerdo con el compromiso social de la universidad, de tal forma que la probabilidad de utilizar esta metodologĂ­a es 3.52 veces mayor que no hacerloThe service-learning methodology is one of the most appropriate to adapt to changes, and new social and educational challenges in the Higher Education environment. This is an approach that promotes an experiential type of learning in which the teaching staff does not play a prominent role, but those who offer and receive the service. There are several reasons for proposing this methodology in the university classrooms, and they have to do with the improvement of the educational processes, students’ ethical and civic education, as well as with the improvement of the existing linkages between university and society. Specifically, our objective in this paper is to analyze which are the variables explaining the introduction of the service-learning methodology by a university professor. Methodology: To this end, a study involving 1903 professors from 6 Spanish universities was carried out. They were administered the “Questionnaire on Teaching Practice and Attitude of University Professors towards Innovation” (CUPAIN). Results: With the data obtained, a logistic regression was performed in order to estimate the probability that a university professor uses servicelearning according to sociodemographic variables (sex, age, type of subject, students enrolled, administrative situation, experience, cycle), teaching practice, agreement with the social commitment of the university and interest in innovative teaching practices; subsequently, a multivariate analysis of variance (MANOVA) 5 X 2, and a Chi-square test were applied. Discussion and Conclusions: The data analysis allowed us to conclude that, of all the analyzed variables, the one that better predicts the use of SL by the professors is their engagement with the university’s social commitment, in such a way that the probability of using this methodology is 3.52 times higher than not doing itS

    El profesorado universitario ante el aprendizaje-servicio: variables explicativas

    Get PDF
    IntroducciĂłn: La metodologĂ­a del aprendizaje-servicio es una de las mĂĄs adecuadas para adaptarse a los cambios y a los nuevos retos sociales y educativos en el espacio universitario. Se trata de un enfoque que promueve un aprendizaje de tipo experiencial en el que el protagonismo no estĂĄ en el profesorado sino en quienes ofrecen y en quienes reciben el servicio. Las razones para proponer esta metodologĂ­a en las aulas universitarias son muy variadas, y tienen que ver con la mejora de los procesos educativos, la formaciĂłn Ă©tica y ciudadana del alumnado, asĂ­ como con la mejora de los vĂ­nculos existentes entre universidad y sociedad. Concretamente, nuestro objetivo en este trabajo es analizar cuĂĄles son las variables que explican que un profesor universitario introduzca la metodologĂ­a de aprendizaje-servicio en su quehacer docente. MetodologĂ­a: Con este propĂłsito, hemos llevado a cabo un estudio con 1903 docentes de 6 universidades españolas a los que se les ha aplicado el “Cuestionario sobre PrĂĄctica docente y Actitud del profesorado universitario hacia la InnovaciĂłn” (CUPAIN). Resultados: Con los datos obtenidos realizamos una regresiĂłn logĂ­stica con la finalidad de estimar la probabilidad de que un profesor universitario utilice o no el aprendizaje servicio segĂșn variables sociodemogrĂĄficas (sexo, edad, tipo de materia, alumnos matriculados, situaciĂłn administrativa, experiencia, ciclo), la prĂĄctica docente, el acuerdo con el compromiso social de la universidad y el interĂ©s por prĂĄcticas docentes innovadoras; y, posteriormente, un anĂĄlisis de varianza multivariado (MANOVA) 5 X 2, y una prueba chi-cuadrado. DiscusiĂłn y conclusiones: El anĂĄlisis de los datos nos permite concluir que de todas las variables analizadas la que mejor predice el empleo del ApS por parte de los docentes es su acuerdo con el compromiso social de la universidad, de tal forma que la probabilidad de utilizar esta metodologĂ­a es 3.52 veces mayor que no hacerlo.Introduction: The service-learning methodology is one of the most appropriate to adapt to changes, and new social and educational challenges in the Higher Education environment. This is an approach that promotes an experiential type of learning in which the teaching staff does not play a prominent role, but those who offer and receive the service. There are several reasons for proposing this methodology in the university classrooms, and they have to do with the improvement of the educational processes, students’ ethical and civic education, as well as with the improvement of the existing linkages between university and society. Specifically, our objective in this paper is to analyze which are the variables explaining the introduction of the service-learning methodology by a university professor. Methodology: To this end, a study involving 1903 professors from 6 Spanish universities was carried out. They were administered the “Questionnaire on Teaching Practice and Attitude of University Professors towards Innovation” (CUPAIN). Results: With the data obtained, a logistic regression was performed in order to estimate the probability that a university professor uses service learning according to sociodemographic variables (sex, age, type of subject, students enrolled, administrative situation, experience, cycle), teaching practice, agreement with the social commitment of the university and interest in innovative teaching practices; subsequently, a multivariate analysis of variance (MANOVA) 5 X 2, and a Chi-square test were applied. Discussion and Conclusions: The data analysis allowed us to conclude that, of all the analyzed variables, the one that better predicts the use of SL by the professors is their engagement with the university’s social commitment, in such a way that the probability of using this methodology is 3.52 times higher than not doing it

    Genetic diversity, yield, and fruit quality of persimmon in the tropics

    Get PDF
    O objetivo deste trabalho foi estimar a diversidade genĂ©tica, o rendimento e a qualidade de frutos de genĂłtipos de caquizeiros cultivados nos trĂłpicos, para selecionar materiais genĂ©ticos promissores. A extração de DNA foi realizada em folhas jovens de 19 genĂłtipos de caqui. Para a caracterização pomolĂłgica, foram selecionados 15 genĂłtipos. Para cada genĂłtipo, 50 frutos foram colhidos pela manhĂŁ, no estĂĄgio de maturidade fisiolĂłgica, para determinar os seguintes parĂąmetros: caracterĂ­sticas fĂ­sico-quĂ­micas; e as variĂĄveis produtivas nĂșmero de frutos por planta, massa de matĂ©ria fresca mĂ©dia dos frutos, produtividade mĂ©dia e produtividade mĂ©dia estimada, em duas safras. Vinte marcadores SSR foram testados, dos quais 12 foram selecionados para avaliar a similaridade genĂ©tica, o que permitiu a identificação de grupos distintos. O valor mĂ©dio de diversidade genĂ©tica encontrado foi 0,41, o que Ă© indicativo de baixa diversidade entre os genĂłtipos de caqui analisados. Os genĂłtipos 'Guiombo', 'Iapar 125', 'Kakimel', 'Mikado RJ', 'Rama Forte Tardio' e 'TaubatĂ©' apresentam alta produtividade. Os genĂłtipos classificados como sendo de polinização constante adstringente ('Pomelo', 'Regina', 'Rubi' e 'TaubatĂ©') e os classificados como sendo de polinização variante adstringente ('Rama Forte', 'Guiombo' e 'Cereja') sĂŁo materiais com potencial para uso em programas de seleção e melhoramento genĂ©tico, devido Ă s suas excelentes caracterĂ­sticas fĂ­sico-quĂ­micas de fruta. A investigação por meio de marcadores moleculares Ă© uma abordagem eficiente para estudar a diversidade genĂ©tica de genĂłtipos de caquizeiro cultivados nos trĂłpicos.The objective of this work was to determine the genetic diversity, yield, and fruit quality of persimmon genotypes grown in the tropics, in order to select promising genetic materials. DNA extraction was performed on young leaves of 19 persimmon genotypes. For pomological characterization, 15 genotypes were selected. From each genotype, 50 fruit at the physiological maturity stage were harvested in the morning, in order to determine the following parameters: physicochemical characteristics; and the productive variables number of fruit per plant, average fruit fresh mass, average yield, and estimated average yield in two seasons. Twenty SSR markers were tested, out of which 12 were selected to evaluate genetic similarity, which allowed of the identification of distinct groups. The mean genetic diversity value found was 0.41, which is an indicative of low diversity among the analyzed persimmon genotypes. The 'Guiombo', 'Iapar 125', 'Kakimel', 'Mikado RJ', 'Rama Forte Tardio', and 'TaubatĂ©' genotypes show a high yield. The genotypes classified as pollination-constant astringent ('Pomelo', 'Regina', 'Rubi', and 'TaubatĂ©') and those classified as pollination-variant astringent ('Rama Forte', 'Guiombo', and 'Cereja') are potential materials for selection and genetic breeding programs due to their excellent fruit physicochemical characteristics. The investigation through molecular markers is an efficient approach to study the genetic diversity of persimmon genotypes grown in the tropics

    MBW complexes impinge on anthocyanidin reductase gene regulation for proanthocyanidin biosynthesis in persimmon fruit

    Full text link
    [EN] MBW protein complexes containing MYB, bHLH and WD40 repeat factors are known transcriptional regulators of secondary metabolites production such as proanthocyanidins and anthocyanins, and developmental processes such as trichome formation in many plant species. DkMYB2 and DkMYB4 (MYB-type), DkMYC1 (bHLH-type) and DkWDR1 (WD40-type) factors have been proposed by different authors to take part of persimmon MBW complexes for proanthocyanidin accumulation in immature fruit, leading to its characteristic astringent flavour with important agronomical and ecological effects. We have confirmed the nuclear localization of these proteins and their mutual physical interaction by bimolecular fluorescence complementation analysis. In addition, transient expression of DkMYB2, DkMYB4 and DkMYC1 cooperatively increase the expression of a persimmon anthocyanidin reductase gene (ANR), involved in the biosynthesis of cis-flavan-3-ols, the structural units of proanthocyanidin compounds. Collectively, these data support the presence of MBW complexes in persimmon fruit and suggest their coordinated participation in ANR regulation for proanthocyanidin production.This work was funded by the Instituto Nacional de InvestigaciĂłn y TecnologĂ­a Agraria y Alimentaria (INIA)-FEDER (grant no. RF2013-00043-C02-02 and RTA2017-00011-C03-01). FG-M was funded by a fellowship co-financed by the Generalitat Valenciana and European Social Fund (2014 2020) (grant no. ACIF/2016/115).Gil Muñoz, F.; Sanchez Navarro, JA.; Besada Ferreiro, CM.; Salvador Perez, AA.; Badenes Catala, M.; Naval Merino, MDM.; Rios Garcia, G. (2020). MBW complexes impinge on anthocyanidin reductase gene regulation for proanthocyanidin biosynthesis in persimmon fruit. Scientific Reports. 10:1-11. https://doi.org/10.1038/s41598-020-60635-wS11110Dixon, R. A., Xie, D.-Y. & Sharma, S. B. Proanthocyanidins–a final frontier in flavonoid research? New Phytol. 165, 9–28 (2005).Yonemori, K. & Matsushima, J. Property of development of the tannin cells in non-astringent type fruits of Japanese persimmon (Diospyros kaki) and its relationship to natural deastringency. J. Jpn. Soc. Hortic. Sci. 54, 201–208 (1985).Salvador, A. et al. Physiological and structural changes during ripening and deastringency treatment of persimmon fruit cv. ‘Rojo Brillante’. Postharvest Biol. Tec. 46, 181–188 (2007).Bernays, E. A., Driver, G. C. & Bilgener, M. Herbivores and plant tannins. In Advances in Ecological Research (eds. Begon, M., Fitter, A. H., Ford, E. D. & MacFadyen, A.) 19, 263–302 (Academic Press, 1989).Tessmer, M. A. et al. Microstructural changes while persimmon fruits mature and ripen. Comparison between astringent and non-astringent cultivars. Postharvest Biol. Tec. 120, 52–60 (2016).Nishiyama, S. et al. Characterization of a gene regulatory network underlying astringency loss in persimmon fruit. Planta 247, 733–743 (2018).Sugiura, A., Yonemori, K., Harada, H. & Tomama, T. Changes of ethanol and acetaldehyde contents in Japanese persimmon fruits and their relation to natural deastringency. Studies from Inst. Hort. Kyoto Univ. 9, 41–47 (1979).Sugiura, A. & Tomana, T. Relationships of ethanol production by seeds of different types of Japanese persimmons and their tannin content. HortSci. 18, 319–321 (1983).Ben-Arie, R. & Sonego, L. Temperature affects astringency removal and recurrence in persimmon. J. Food Sci. 58, 1397–1400 (1993).Matsuo, T. & Itoo, S. A model experiment for de-astringency of persimmon fruit with high carbon dioxide treatment: in vitro gelation of kaki-tannin by reacting with acetaldehyde. Agr. Biol. Chem. Tokyo 46, 683–689 (1982).Pesis, E. & Ben-Arie, R. Involvement of acetaldehyde and ethanol accumulation during induced deastringency of persimmon fruits. J. Food Sci. 49, 896–899 (1984).Kanzaki, S., Yonemori, K., Sugiura, A., Sato, A. & Yamada, M. Identification of molecular markers linked to the trait of natural astringency loss of Japanese persimmon (Diospyros kaki) fruit. J. Am. Soc. Hortic. Sci. 126, 51–55 (2001).Yamada, M. & Sato, A. Segregation for fruit astringency type in progenies derived from crosses of ‘Nishimurawase’×pollination constant non-astringent genotypes in oriental persimmon (Diospyros kaki Thunb.). Sci. Hortic.-Amsterdam 92, 107–111 (2002).Besada, C. et al. Chloride stress triggers maturation and negatively affects the postharvest quality of persimmon fruit. Involvement of calyx ethylene production. Plant Physiol. Biochem. 100, 105–112 (2016).Lepiniec, L. et al. Genetics and biochemistry of seed flavonoids. Annu. Rev. Plant Biol. 57, 405–430 (2006).Tanner, G. J. et al. Proanthocyanidin biosynthesis in plants. Purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. J. Biol. Chem. 278, 31647–31656 (2003).Xie, D.-Y., Sharma, S. B., Paiva, N. L., Ferreira, D. & Dixon, R. A. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299, 396–399 (2003).Ikegami, A., Eguchi, S., Kitajima, A., Inoue, K. & Yonemori, K. Identification of genes involved in proanthocyanidin biosynthesis of persimmon (Diospyros kaki) fruit. Plant Science 172, 1037–1047 (2007).Akagi, T. et al. Expression balances of structural genes in shikimate and flavonoid biosynthesis cause a difference in proanthocyanidin accumulation in persimmon (Diospyros kaki Thunb.) fruit. Planta 230, 899–915 (2009).Baudry, A. et al. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J. 39, 366–380 (2004).Xu, W. et al. Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB-bHLH-WDR complexes and their targets in Arabidopsis seed. New Phytol. 202, 132–144 (2014).Xu, W., Dubos, C. & Lepiniec, L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci. 20, 176–185 (2015).Hichri, I. et al. The basic helix-loop-helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine. Mol. Plant 3, 509–523 (2010).Schaart, J. G. et al. Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria × ananassa) fruits. New Phytol. 197, 454–467 (2013).Gesell, A., Yoshida, K., Tran, L. T. & Constabel, C. P. Characterization of an apple TT2-type R2R3 MYB transcription factor functionally similar to the poplar proanthocyanidin regulator PtMYB134. Planta 240, 497–511 (2014).Naval, M. et al. A WD40-repeat protein from persimmon interacts with the regulators of proanthocyanidin biosynthesis DkMYB2 and DkMYB4. Tree Genet. Genomes 12, 13 (2016).Akagi, T. et al. DkMyb4 is a Myb transcription factor involved in proanthocyanidin biosynthesis in persimmon fruit. Plant Physiol. 151, 2028–2045 (2009).Akagi, T., Ikegami, A. & Yonemori, K. DkMyb2 wound-induced transcription factor of persimmon (Diospyros kaki Thunb.), contributes to proanthocyanidin regulation. Planta 232, 1045–1059 (2010).Su, F., Hu, J., Zhang, Q. & Luo, Z. Isolation and characterization of a basic Helix–Loop–Helix transcription factor gene potentially involved in proanthocyanidin biosynthesis regulation in persimmon (Diospyros kaki Thunb.). Sci. Hortic.-Amsterdam 136, 115–121 (2012).Hribal, J., Zavrtanik, M., Simćić, M. & Vidrih, R. Changes during storing and astringency removal of persimmon fruit Diospyros kaki L. Acta Aliment. Hung. 29, 123–136 (2000).Nesi, N., Jond, C., Debeaujon, I., Caboche, M. & Lepiniec, L. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13, 2099–2114 (2001).Zhao, M., Morohashi, K., Hatlestad, G., Grotewold, E. & Lloyd, A. The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development 135, 1991–1999 (2008).Weill, U. et al. Assessment of GFP tag position on protein localization and growth Fitness in yeast. J. Mol. Biol. 431, 636–641 (2019).Wang, P. et al. A sucrose-induced MYB (SIMYB) transcription factor promoting proanthocyanidin accumulation in the tea plant (Camellia sinensis). J. Agric. Food Chem. 67, 1418–1428 (2019).Baudry, A., Caboche, M. & Lepiniec, L. TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell-specific accumulation of flavonoids in Arabidopsis thaliana. Plant J. 46, 768–779 (2006).Albert, N. W. et al. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. Plant Cell 26, 962–980 (2014).Bellini, E. Cultural practices for persimmon production. In Options MĂ©diterranĂ©ennes. SĂ©rie A: SĂ©minaires MĂ©diterranĂ©ens (CIHEAM) (eds. Bellini, E. & Giordani, E.) 51. 39–52 (CIHEAM-IAMZ, 2002).Taira, S. Astringency in Persimmon. In Fruit Analysis (eds. Linskens, H. F. & Jackson, J. F.) 97–110 (Springer Berlin Heidelberg, 1995).Arnal, L. & Rio, M. A. D. Quality of persimmon fruit cv. Rojo brillante during storage at different temperatures. Span. J. Agric. Res. 2, 243–247 (2004).Akagi, T., Henry, I. M., Tao, R. & Comai, L. A Y-chromosome–encoded small RNA acts as a sex determinant in persimmons. Science 346, 646–650 (2014).Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19, 11–15 (1987).Herranz, M. C., Sanchez-Navarro, J. A., Aparicio, F. & PallĂĄs, V. Simultaneous detection of six stone fruit viruses by non-isotopic molecular hybridization using a unique riboprobe or ‘polyprobe’. J. Virol. Methods 124, 49–55 (2005).Leastro, M. O., PallĂĄs, V., Resende, R. O. & SĂĄnchez-Navarro, J. A. The movement proteins (NSm) of distinct tospoviruses peripherally associate with cellular membranes and interact with homologous and heterologous NSm and nucleocapsid proteins. Virology 478, 39–49 (2015).Knoester, M. et al. Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi. Proc. Natl. Acad. Sci. USA 95, 1933–1937 (1998).Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S. & Mullineaux, P. M. pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol. Biol. 42, 819–832 (2000).Hamilton, C. M., Frary, A., Lewis, C. & Tanksley, S. D. Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc. Natl. Acad. Sci. USA 93, 9975–9979 (1996).GenovĂ©s, A., PallĂĄs, V. & Navarro, J. A. Contribution of topology determinants of a viral movement protein to its membrane association, intracellular traffic, and viral cell-to-cell movement. J. Virol. 85, 7797–7809 (2011).Aparicio, F., SĂĄnchez-Navarro, J. A. & PallĂĄs, V. In vitro and in vivo mapping of the Prunus necrotic ringspot virus coat protein C-terminal dimerization domain by bimolecular fluorescence complementation. J. Gen. Virol. 87, 1745–1750 (2006).Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).Gambino, G., Perrone, I. & Gribaudo, I. A Rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochem. Anal. 19, 520–525 (2008)

    A cross population between D. kaki and D. virginiana shows high variability for saline tolerance and improved salt stress tolerance

    Get PDF
    [EN] Persimmon (Diospyros kaki Thunb.) production is facing important problems related to climate change in the Mediterranean areas. One of them is soil salinization caused by the decrease and change of the rainfall distribution. In this context, there is a need to develop cultivars adapted to the increasingly challenging soil conditions. In this study, a backcross between (D. kaki x D. virginiana) x D. kaki was conducted, to unravel the mechanism involved in salinity tolerance of persimmon. The backcross involved the two species most used as rootstock for persimmon production. Both species are clearly distinct in their level of tolerance to salinity. Variables related to growth, leaf gas exchange, leaf water relations and content of nutrients were significantly affected by saline stress in the backcross population. Water flow regulation appears as a mechanism of salt tolerance in persimmon via differences in water potential and transpiration rate, which reduces ion entrance in the plant. Genetic expression of eight putative orthologous genes involved in different mechanisms leading to salt tolerance was analyzed. Differences in expression levels among populations under saline or control treatment were found. The 'High affinity potassium transporter' (HKT1-like) reduced its expression levels in the roots in all studied populations. Results obtained allowed selection of tolerant rootstocks genotypes and describe the hypothesis about the mechanisms involved in salt tolerance in persimmon that will be useful for breeding salinity tolerant rootstocks.This study was funded by the IVIA and the European Funds for Regional Development. F. G.M.was funded by a PhD fellowship from the European Social Fund and the Generalitat Valenciana (ACIF/2016/115). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.Gil Muñoz, F.; PĂ©rez-PĂ©rez, JG.; Quiñones, A.; Primo-Capella, A.; Cebolla Cornejo, J.; Forner Giner, MA.; Badenes Catala, M.... (2020). A cross population between D. kaki and D. virginiana shows high variability for saline tolerance and improved salt stress tolerance. PLoS ONE. 15(2):1-27. https://doi.org/10.1371/journal.pone.0229023S127152Visconti, F., de Paz, J. M., Bonet, L., JordĂ , M., Quiñones, A., & Intrigliolo, D. S. (2015). Effects of a commercial calcium protein hydrolysate on the salt tolerance of Diospyros kaki L. cv. «Rojo Brillante» grafted on Diospyros lotus L. Scientia Horticulturae, 185, 129-138. doi:10.1016/j.scienta.2015.01.028Forner-Giner, M. A., & Ancillo, G. (2013). Breeding Salinity Tolerance in Citrus Using Rootstocks. Salt Stress in Plants, 355-376. doi:10.1007/978-1-4614-6108-1_14Visconti, F., Intrigliolo, D. S., Quiñones, A., Tudela, L., Bonet, L., & de Paz, J. M. (2017). Differences in specific chloride toxicity to Diospyros kaki cv. «Rojo Brillante» grafted on D. lotus and D. virginiana. Scientia Horticulturae, 214, 83-90. doi:10.1016/j.scienta.2016.11.025INCESU, M., CIMEN, B., YESILOGLU, T., & YILMAZ, B. (2014). Growth and Photosynthetic Response of Two Persimmon Rootstocks (Diospyros kaki and D. virginiana) under Different Salinity Levels. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42(2), 386-391. doi:10.15835/nbha4229471De Paz, J. M., Visconti, F., Chiaravalle, M., & Quiñones, A. (2016). Determination of persimmon leaf chloride contents using near-infrared spectroscopy (NIRS). Analytical and Bioanalytical Chemistry, 408(13), 3537-3545. doi:10.1007/s00216-016-9430-2Gil-Muñoz, F., Peche, P. M., Climent, J., Forner, M. A., Naval, M. M., & Badenes, M. L. (2018). Breeding and screening persimmon rootstocks for saline stress tolerance. Acta Horticulturae, (1195), 105-110. doi:10.17660/actahortic.2018.1195.18Besada, C., Gil, R., Bonet, L., Quiñones, A., Intrigliolo, D., & Salvador, A. (2016). Chloride stress triggers maturation and negatively affects the postharvest quality of persimmon fruit. Involvement of calyx ethylene production. Plant Physiology and Biochemistry, 100, 105-112. doi:10.1016/j.plaphy.2016.01.006Acosta-Motos, J., Ortuño, M., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M., & Hernandez, J. (2017). Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy, 7(1), 18. doi:10.3390/agronomy7010018Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi:10.1146/annurev.arplant.59.032607.092911Sibole, J. V., Cabot, C., Poschenrieder, C., & BarcelĂł, J. (2003). Ion allocation in two different salt-tolerant MediterraneanMedicagospecies. Journal of Plant Physiology, 160(11), 1361-1365. doi:10.1078/0176-1617-00811CRAIG PLETT, D., & MØLLER, I. S. (2010). Na+transport in glycophytic plants: what we know and would like to know. Plant, Cell & Environment, 33(4), 612-626. doi:10.1111/j.1365-3040.2009.02086.xSHAPIRA, O., KHADKA, S., ISRAELI, Y., SHANI, U., & SCHWARTZ, A. (2009). Functional anatomy controls ion distribution in banana leaves: significance of Na+seclusion at the leaf margins. Plant, Cell & Environment, 32(5), 476-485. doi:10.1111/j.1365-3040.2009.01941.xHuang, C. X., & Van Steveninck, R. F. M. (1989). Maintenance of Low Cl− Concentrations in Mesophyll Cells of Leaf Blades of Barley Seedlings Exposed to Salt Stress. Plant Physiology, 90(4), 1440-1443. doi:10.1104/pp.90.4.1440Karley, A. J., Leigh, R. A., & Sanders, D. (2000). Differential Ion Accumulation and Ion Fluxes in the Mesophyll and Epidermis of Barley. Plant Physiology, 122(3), 835-844. doi:10.1104/pp.122.3.835Karley, A. J., Leigh, R. A., & Sanders, D. (2000). Where do all the ions go? The cellular basis of differential ion accumulation in leaf cells. Trends in Plant Science, 5(11), 465-470. doi:10.1016/s1360-1385(00)01758-1JAMES, R. A., MUNNS, R., VON CAEMMERER, S., TREJO, C., MILLER, C., & CONDON, T. (A. G. . (2006). Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+and Cl-in salt-affected barley and durum wheat. Plant, Cell and Environment, 29(12), 2185-2197. doi:10.1111/j.1365-3040.2006.01592.xZekri, M., & Parsons, L. R. (1989). Growth and root hydraulic conductivity of several citrus rootstocks under salt and polyethylene glycol stresses. Physiologia Plantarum, 77(1), 99-106. doi:10.1111/j.1399-3054.1989.tb05984.xJoly, R. J. (1989). Effects of Sodium Chloride on the Hydraulic Conductivity of Soybean Root Systems. Plant Physiology, 91(4), 1262-1265. doi:10.1104/pp.91.4.1262Maurel, C., Verdoucq, L., Luu, D.-T., & Santoni, V. (2008). Plant Aquaporins: Membrane Channels with Multiple Integrated Functions. Annual Review of Plant Biology, 59(1), 595-624. doi:10.1146/annurev.arplant.59.032607.092734Johanson, U., Karlsson, M., Johansson, I., Gustavsson, S., Sjövall, S., Fraysse, L., 
 Kjellbom, P. (2001). The Complete Set of Genes Encoding Major Intrinsic Proteins in Arabidopsis Provides a Framework for a New Nomenclature for Major Intrinsic Proteins in Plants. Plant Physiology, 126(4), 1358-1369. doi:10.1104/pp.126.4.1358Carmen MartĂ­nez-Ballesta, M., Aparicio, F., PallĂĄs, V., MartĂ­nez, V., & Carvajal, M. (2003). Influence of saline stress on root hydraulic conductance and PIP expression inArabidopsis. Journal of Plant Physiology, 160(6), 689-697. doi:10.1078/0176-1617-00861Boursiac, Y., Chen, S., Luu, D.-T., Sorieul, M., van den Dries, N., & Maurel, C. (2005). Early Effects of Salinity on Water Transport in Arabidopsis Roots. Molecular and Cellular Features of Aquaporin Expression. Plant Physiology, 139(2), 790-805. doi:10.1104/pp.105.065029LĂłpez-PĂ©rez, L., MartĂ­nez-Ballesta, M. del C., Maurel, C., & Carvajal, M. (2009). Changes in plasma membrane lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity. Phytochemistry, 70(4), 492-500. doi:10.1016/j.phytochem.2009.01.014RodrĂ­guez-Gamir, J., Ancillo, G., Legaz, F., Primo-Millo, E., & Forner-Giner, M. A. (2012). Influence of salinity on pip gene expression in citrus roots and its relationship with root hydraulic conductance, transpiration and chloride exclusion from leaves. Environmental and Experimental Botany, 78, 163-166. doi:10.1016/j.envexpbot.2011.12.027Chaumont, F., & Tyerman, S. D. (2014). Aquaporins: Highly Regulated Channels Controlling Plant Water Relations. Plant Physiology, 164(4), 1600-1618. doi:10.1104/pp.113.233791Amtmann, A., & Sanders, D. (1998). Mechanisms of Na+ Uptake by Plant Cells. Advances in Botanical Research, 75-112. doi:10.1016/s0065-2296(08)60310-9TESTER, M. (2003). Na+ Tolerance and Na+ Transport in Higher Plants. Annals of Botany, 91(5), 503-527. doi:10.1093/aob/mcg058Qiu, Q.-S., Barkla, B. J., Vera-Estrella, R., Zhu, J.-K., & Schumaker, K. S. (2003). Na+/H+ Exchange Activity in the Plasma Membrane of Arabidopsis. Plant Physiology, 132(2), 1041-1052. doi:10.1104/pp.102.010421Shi, H., Quintero, F. J., Pardo, J. M., & Zhu, J.-K. (2002). The Putative Plasma Membrane Na+/H+ Antiporter SOS1 Controls Long-Distance Na+ Transport in Plants. The Plant Cell, 14(2), 465-477. doi:10.1105/tpc.010371Zhu, J.-K., Liu, J., & Xiong, L. (1998). Genetic Analysis of Salt Tolerance in Arabidopsis: Evidence for a Critical Role of Potassium Nutrition. The Plant Cell, 10(7), 1181-1191. doi:10.1105/tpc.10.7.1181Liu, J., & Zhu, J.-K. (1998). A Calcium Sensor Homolog Required for Plant Salt Tolerance. Science, 280(5371), 1943-1945. doi:10.1126/science.280.5371.1943Halfter, U., Ishitani, M., & Zhu, J.-K. (2000). The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proceedings of the National Academy of Sciences, 97(7), 3735-3740. doi:10.1073/pnas.97.7.3735Liu, J., Ishitani, M., Halfter, U., Kim, C.-S., & Zhu, J.-K. (2000). The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences, 97(7), 3730-3734. doi:10.1073/pnas.97.7.3730Hrabak, E. M., Chan, C. W. M., Gribskov, M., Harper, J. F., Choi, J. H., Halford, N., 
 Harmon, A. C. (2003). The Arabidopsis CDPK-SnRK Superfamily of Protein Kinases. Plant Physiology, 132(2), 666-680. doi:10.1104/pp.102.011999Shi, H., Ishitani, M., Kim, C., & Zhu, J.-K. (2000). The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Sciences, 97(12), 6896-6901. doi:10.1073/pnas.120170197Qiu, Q.-S., Guo, Y., Dietrich, M. A., Schumaker, K. S., & Zhu, J.-K. (2002). Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences, 99(12), 8436-8441. doi:10.1073/pnas.122224699Quintero, F. J., Ohta, M., Shi, H., Zhu, J.-K., & Pardo, J. M. (2002). Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proceedings of the National Academy of Sciences, 99(13), 9061-9066. doi:10.1073/pnas.132092099Quan, R., Lin, H., Mendoza, I., Zhang, Y., Cao, W., Yang, Y., 
 Guo, Y. (2007). SCABP8/CBL10, a Putative Calcium Sensor, Interacts with the Protein Kinase SOS2 to Protect Arabidopsis Shoots from Salt Stress. The Plant Cell, 19(4), 1415-1431. doi:10.1105/tpc.106.042291Quintero, F. J., Martinez-Atienza, J., Villalta, I., Jiang, X., Kim, W.-Y., Ali, Z., 
 Pardo, J. M. (2011). Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proceedings of the National Academy of Sciences, 108(6), 2611-2616. doi:10.1073/pnas.1018921108Ji, H., Pardo, J. M., Batelli, G., Van Oosten, M. J., Bressan, R. A., & Li, X. (2013). The Salt Overly Sensitive (SOS) Pathway: Established and Emerging Roles. Molecular Plant, 6(2), 275-286. doi:10.1093/mp/sst017Isayenkov, S. V., & Maathuis, F. J. M. (2019). Plant Salinity Stress: Many Unanswered Questions Remain. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00080Evans, A. R., Hall, D., Pritchard, J., & Newbury, H. J. (2011). The roles of the cation transporters CHX21 and CHX23 in the development of Arabidopsis thaliana. Journal of Experimental Botany, 63(1), 59-67. doi:10.1093/jxb/err271Uozumi, N., Kim, E. J., Rubio, F., Yamaguchi, T., Muto, S., Tsuboi, A., 
 Schroeder, J. I. (2000). The Arabidopsis HKT1 Gene Homolog Mediates Inward Na+ Currents in Xenopus laevis Oocytes and Na+ Uptake in Saccharomyces cerevisiae  . Plant Physiology, 122(4), 1249-1260. doi:10.1104/pp.122.4.1249MĂ€ser, P., Eckelman, B., Vaidyanathan, R., Horie, T., Fairbairn, D. J., Kubo, M., 
 Schroeder, J. I. (2002). Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Letters, 531(2), 157-161. doi:10.1016/s0014-5793(02)03488-9Berthomieu, P. (2003). Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. The EMBO Journal, 22(9), 2004-2014. doi:10.1093/emboj/cdg207Rus, A., Lee, B., Muñoz-Mayor, A., Sharkhuu, A., Miura, K., Zhu, J.-K., 
 Hasegawa, P. M. (2004). AtHKT1 Facilitates Na+ Homeostasis and K+ Nutrition in Planta. Plant Physiology, 136(1), 2500-2511. doi:10.1104/pp.104.042234Sunarpi, Horie, T., Motoda, J., Kubo, M., Yang, H., Yoda, K., 
 Uozumi, N. (2005). Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. The Plant Journal, 44(6), 928-938. doi:10.1111/j.1365-313x.2005.02595.xHuang, S., Spielmeyer, W., Lagudah, E. S., James, R. A., Platten, J. D., Dennis, E. S., & Munns, R. (2006). A Sodium Transporter (HKT7) Is a Candidate forNax1, a Gene for Salt Tolerance in Durum Wheat. Plant Physiology, 142(4), 1718-1727. doi:10.1104/pp.106.088864Byrt, C. S., Platten, J. D., Spielmeyer, W., James, R. A., Lagudah, E. S., Dennis, E. S., 
 Munns, R. (2007). HKT1;5-Like Cation Transporters Linked to Na+ Exclusion Loci in Wheat, Nax2 and Kna1. Plant Physiology, 143(4), 1918-1928. doi:10.1104/pp.106.093476GarciadeblĂĄs, B., Senn, M. E., Bañuelos, M. A., & RodrĂ­guez-Navarro, A. (2003). Sodium transport and HKT transporters: the rice model. The Plant Journal, 34(6), 788-801. doi:10.1046/j.1365-313x.2003.01764.xHuang, S., Spielmeyer, W., Lagudah, E. S., & Munns, R. (2008). Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance. Journal of Experimental Botany, 59(4), 927-937. doi:10.1093/jxb/ern033Horie, T., Costa, A., Kim, T. H., Han, M. J., Horie, R., Leung, H.-Y., 
 Schroeder, J. I. (2007). Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. The EMBO Journal, 26(12), 3003-3014. doi:10.1038/sj.emboj.7601732Almeida, P., Katschnig, D., & de Boer, A. (2013). HKT Transporters—State of the Art. International Journal of Molecular Sciences, 14(10), 20359-20385. doi:10.3390/ijms141020359Cellier, F., ConĂ©jĂ©ro, G., Ricaud, L., Luu, D. T., Lepetit, M., Gosti, F., & Casse, F. (2004). Characterization ofAtCHX17, a member of the cation/H+exchangers, CHX family, fromArabidopsis thalianasuggests a role in K+homeostasis. The Plant Journal, 39(6), 834-846. doi:10.1111/j.1365-313x.2004.02177.xSong, C.-P., Guo, Y., Qiu, Q., Lambert, G., Galbraith, D. W., Jagendorf, A., & Zhu, J.-K. (2004). A probable Na+(K+)/H+ exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 101(27), 10211-10216. doi:10.1073/pnas.0403709101Padmanaban, S., Chanroj, S., Kwak, J. M., Li, X., Ward, J. M., & Sze, H. (2007). Participation of Endomembrane Cation/H+ Exchanger AtCHX20 in Osmoregulation of Guard Cells. Plant Physiology, 144(1), 82-93. doi:10.1104/pp.106.092155Szczerba, M. W., Britto, D. T., & Kronzucker, H. J. (2009). K+ transport in plants: Physiology and molecular biology. Journal of Plant Physiology, 166(5), 447-466. doi:10.1016/j.jplph.2008.12.009Brini, F., Gaxiola, R. A., Berkowitz, G. A., & Masmoudi, K. (2005). Cloning and characterization of a wheat vacuolar cation/proton antiporter and pyrophosphatase proton pump. Plant Physiology and Biochemistry, 43(4), 347-354. doi:10.1016/j.plaphy.2005.02.010BarragĂĄn, V., Leidi, E. O., AndrĂ©s, Z., Rubio, L., De Luca, A., FernĂĄndez, J. A., 
 Pardo, J. M. (2012). Ion Exchangers NHX1 and NHX2 Mediate Active Potassium Uptake into Vacuoles to Regulate Cell Turgor and Stomatal Function in Arabidopsis. The Plant Cell, 24(3), 1127-1142. doi:10.1105/tpc.111.095273Barbier-Brygoo, H., De Angeli, A., Filleur, S., Frachisse, J.-M., Gambale, F., Thomine, S., & Wege, S. (2011). Anion Channels/Transporters in Plants: From Molecular Bases to Regulatory Networks. Annual Review of Plant Biology, 62(1), 25-51. doi:10.1146/annurev-arplant-042110-103741Apse, M. P., Aharon, G. S., Snedden, W. A., & Blumwald, E. (1999). Salt Tolerance Conferred by Overexpression of a Vacuolar Na + /H + Antiport in Arabidopsis. Science, 285(5431), 1256-1258. doi:10.1126/science.285.5431.1256Gaxiola, R. A., Li, J., Undurraga, S., Dang, L. M., Allen, G. J., Alper, S. L., & Fink, G. R. (2001). Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proceedings of the National Academy of Sciences, 98(20), 11444-11449. doi:10.1073/pnas.191389398Callister, A. N., Arndt, S. K., & Adams, M. A. (2006). Comparison of four methods for measuring osmotic potential of tree leaves. Physiologia Plantarum, 127(3), 383-392. doi:10.1111/j.1399-3054.2006.00652.xBates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060Gilliam, J. W. (1971). Rapid Measurement of Chlorine in Plant Materials. Soil Science Society of America Journal, 35(3), 512-513. doi:10.2136/sssaj1971.03615995003500030051xGambino, G., Perrone, I., & Gribaudo, I. (2008). A Rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochemical Analysis, 19(6), 520-525. doi:10.1002/pca.1078Akagi, T., Henry, I. M., Kawai, T., Comai, L., & Tao, R. (2016). Epigenetic Regulation of the Sex Determination Gene MeGI in Polyploid Persimmon. The Plant Cell, 28(12), 2905-2915. doi:10.1105/tpc.16.00532Andersen, C. L., Jensen, J. L., & Ørntoft, T. F. (2004). Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets. Cancer Research, 64(15), 5245-5250. doi:10.1158/0008-5472.can-04-0496Akagi, T., Ikegami, A., Tsujimoto, T., Kobayashi, S., Sato, A., Kono, A., & Yonemori, K. (2009). DkMyb4 Is a Myb Transcription Factor Involved in Proanthocyanidin Biosynthesis in Persimmon Fruit. Plant Physiology, 151(4), 2028-2045. doi:10.1104/pp.109.146985Chambers, J. M., Cleveland, W. S., Kleiner, B., & Tukey, P. A. (2018). Graphical Methods for Data Analysis. doi:10.1201/9781351072304Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes*. New Phytologist, 179(4), 945-963. doi:10.1111/j.1469-8137.2008.02531.xMunns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239-250. doi:10.1046/j.0016-8025.2001.00808.xBrugnoli, E., & Lauteri, M. (1991). Effects of Salinity on Stomatal Conductance, Photosynthetic Capacity, and Carbon Isotope Discrimination of Salt-Tolerant (Gossypium hirsutum L.) and Salt-Sensitive (Phaseolus vulgaris L.) C3 Non-Halophytes. Plant Physiology, 95(2), 628-635. doi:10.1104/pp.95.2.628Koyro, H.-W. (2006). Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environmental and Experimental Botany, 56(2), 136-146. doi:10.1016/j.envexpbot.2005.02.001Rahnama, A., James, R. A., Poustini, K., & Munns, R. (2010). Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Functional Plant Biology, 37(3), 255. doi:10.1071/fp09148Zhu, X., Cao, Q., Sun, L., Yang, X., Yang, W., & Zhang, H. (2018). Stomatal Conductance and Morphology of Arbuscular Mycorrhizal Wheat Plants Response to Elevated CO2 and NaCl Stress. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01363Horie, T., Sugawara, M., Okunou, K., Nakayama, H., Schroeder, J. I., Shinmyo, A., & Yoshida, K. (2008). Functions of HKT transporters in sodium transport in roots and in protecting leaves from salinity stress. Plant Biotechnology, 25(3), 233-239. doi:10.5511/plantbiotechnology.25.233Hazzouri, K. M., Khraiwesh, B., Amiri, K. M. A., Pauli, D., Blake, T., Shahid, M., 
 Masmoudi, K. (2018). Mapping of HKT1;5 Gene in Barley Using GWAS Approach and Its Implication in Salt Tolerance Mechanism. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.00156Han, Y., Yin, S., Huang, L., Wu, X., Zeng, J., Liu, X., 
 Zhang, G. (2018). A Sodium Transporter HvHKT1;1 Confers Salt Tolerance in Barley via Regulating Tissue and Cell Ion Homeostasis. Plant and Cell Physiology, 59(10), 1976-1989. doi:10.1093/pcp/pcy116Henderson, S. W., Baumann, U., Blackmore, D. H., Walker, A. R., Walker, R. R., & Gilliham, M. (2014). Shoot chloride exclusion and salt tolerance in grapevine is associated with differential ion transporter expression in roots. BMC Plant Biology, 14(1). doi:10.1186/s12870-014-0273-8Vitali, V., Bellati, J., Soto, G., Ayub, N. D., & Amodeo, G. (2015). Root hydraulic conductivity and adjustments in stomatal conductance: hydraulic strategy in response to salt stress in a halotolerant species. AoB Plants, 7, plv136. doi:10.1093/aobpla/plv13

    El aprendizaje-servicio en la universidad: pedagogĂ­a y capital social para los estudiantes

    Get PDF
    Es un hecho que, al menos en España, con la puesta en marcha del Espacio Europeo de la Educación Superior, la universidad creció en atención y sensibilidad estratégica hacia determinadas cuestiones de corte pedagógico en su articulación curricular, impulsando en los Campus planes de formación inicial y continua de su profesorad

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic
    corecore