35 research outputs found

    The Duties and the Powers of the Chapter 7 Trustee in Bankruptcy in the United States and in Belgium

    Full text link
    U.S. bankruptcy law offers a wide range of protections to a variety of debtors. The possibility of liquidation, reorganization, or rehabilitation is available to corporations, partnerships, individuals, and even some government institutions in the U.S. Conversely, the accessibility to bankruptcy in Belgium is restricted. In Belgium, only a salesman, as defined in the Belgian Code of Commerce, has access to bankruptcy protection, and this access is restricted in nature only to liquidation. This thesis analyzes the differences in the bankruptcy systems of the U.S. and Belgium, paying special attention to the role of the bankruptcy trustee in Chapter 7 bankruptcy proceedings in the U.S. and in similar scenarios in Belgium. While the trustee is often viewed negatively by both debtors and creditors, the role of the trustee should be appreciated as the trustee often saves the debtor from a worse financial disaster and the creditors from going any longer without payment

    The origin of low-frequency variability of double-gyre wind-driven flows

    Get PDF
    Bifurcation analysis on flows in a two-layer shallow-water model is used to clarify the dynamical origin of low-frequency variability of the double-gyre wind-driven ocean circulation. In many previous model studies, generic low-frequency variations appear to be associated with distinct regimes, characterized by the level of kinetic energy of the mean flow. From these transient flow computations, the current view is that these regimes, and transitions between them, arise through a complex nonlinear interaction between the mean flow and its high-frequency instabilities (the eddies). On the contrary, we demonstrate here, for a particular (but relevant) case, that the origin of these high- and low-energy states is related to the existence of low-frequency instabilities of steady-state flows. The low-frequency modes have distinct spatial patterns and introduce preferential patterns oscillating on interannual to decadal time scales into the flow. In addition, these lowfrequency modes are shown to be robust to the presence of (idealized) topography; the latter may even have a destabilizing effect

    Regimes of low-frequency variability in a three-layer quasi-geostrophic ocean model

    Get PDF
    The temporal variability of the midlatitude double-gyre wind-driven ocean circulation is studied in a three-layer quasi-geostrophic model over a broad range in parameter space. Four different types of flow regimes are found, each characterized by a specific time-mean state and spatio-temporal variability. As the lateral friction is decreased, these regimes are encountered in the following order: the viscous antisymmetric regime, the asymmetric regime, the quasi-homoclinic regime and the inertial antisymmetric regime. The variability in the viscous and the inertial antisymmetric regimes (at high and low lateral friction, respectively) is mainly caused by Rossby basin modes. Low-frequency variability, i.e.on interannual to decadal time-scales, is present in the asymmetric and quasi-homoclinic regime and can be related to relaxation oscillations originating from low-frequency gyre modes. The focus of this paper is on the mechanisms of the transitions between the different regimes. The transition from the viscous antisymmetric regime to the asymmetric regime occurs through a symmetry-breaking pitchfork bifurcation. There are strong indications that the quasi-homoclinic regime is introduced through the existence of a homoclinic orbit. The transition to the inertial antisymmetric regime is due to the symmetrization of the time-mean state zonal velocity field through rectification effects

    First observational evidence of a North Madagascar Undercurrent

    Get PDF
    <i>In situ</i> observations reveal a southeastward-directed North Madagascar Undercurrent (NMUC) below and opposite to the equatorward-directed North Madagascar Current (NMC) off Cape Amber, at the northern tip of Madagascar. Results show an undercurrent hugging the continental slope with its core at 460 m depth and velocities over 0.7 m s-1. Its volume transport is estimated to be 3.1–3.8 Sv, depending on the velocity extrapolation methods used to fill in the data gaps near the slope (no-slip and full-slip, respectively). The thermohaline characteristics show a saltier and warmer NMUC, compared to the surrounding offshore waters, transporting mainly South Indian Central Water. Also, strong horizontal gradients of density are found in the NMUC domain. An inshore cell of coastal downwelling due to Ekman Transport toward the coast is identified, which can explain, at least in part, the strong baroclinic pressure gradients as well as the NMUC development and possible persistence

    Variability and coherence of the Agulhas Undercurrent in a High-resolution Ocean General Circulation Model

    Get PDF
    The Agulhas Current system has been analyzed in a nested high-resolution ocean model and compared to observations. The model shows good performance in the western boundary current structure and the transports off the South African coast. This includes the simulation of the northward-flowing Agulhas Undercurrent. It is demonstrated that fluctuations of the Agulhas Current and Undercurrent around 50–70 days are due to Natal pulses and Mozambique eddies propagating downstream. A sensitivity experiment that excludes those upstream perturbations significantly reduces the variability as well as the mean transport of the undercurrent. Although the model simulates undercurrents in the Mozambique Channel and east of Madagascar, there is no direct connection between those and the Agulhas Undercurrent. Virtual float releases demonstrate that topography is effectively blocking the flow toward the north

    Ongoing methane discharge at well site 22/4b (North Sea)and discovery of a spiral vortex bubble plume motion

    Get PDF
    Highlights • Mega ebullition of biogenic methane from an abandoned offshore gas well, North Sea. • Evidence for midwater bubble plume intrusion, fallback, and short-circuiting of the plume. • Effective trapping of seabed released methane underneath the thermocline. • First observation of a spiral vortex methane plume and marginal turbulences. • Megaplumes appear less efficient in terms of vertical methane transport than previously thought. Abstract First direct evidence for ongoing gas seepage activity on the abandoned well site 22/4b (Northern North Sea, 57°55′ N, 01°38′ E) and discovery of neighboring seepage activity is provided from observations since 2005. A manned submersible dive in 2006 discovered several extraordinary intense seepage sites within a 60 m wide and 20 m deep crater cut into the flat 96 m deep seafloor. Capture and (isotope) chemical analyses of the gas bubbles near the seafloor revealed in situ concentrations of methane between 88 and 90%Vol. with δ13C–CH4 values around −74‰ VPDB, indicating a biogenic origin. Bulk methane concentrations throughout the water column were assessed by 120 Niskin water samples showing up to 400.000 nM CH4 in the crater at depth. In contrast, concentrations above the thermocline were orders of magnitude lower, with a median value of 20 nM. A dye tracer injection into the gas seeps revealed upwelling bubble and water motion with gas plume rise velocities up to ∼1 ms−1 (determined near the seabed). However, the dissolved dye did not pass the thermocline, but returned down to the seabed. Measurements of direct bubble-mediated atmospheric flux revealed low values of 0.7 ± 0.3 kty−1, much less than current state-of-the-art bubble dissolution models would predict for such a strong and upwelling in situ gas bubble flux at shallow water depths (i.e. ∼100 m). Acoustic multibeam water column imaging data indicate a pronounced 200 m lateral intrusion at the thermocline together with high methane concentration at this layer. A partly downward-orientated bubble plume motion is also visible in the acoustic data with potential short-circuiting in accordance to the dye experiment. This observation could partly explain the observed trapping of most of the released gas below the well-established thermocline in the North Sea. Moreover, 3D analyses of the multibeam water column data reveal that the upwelling plume transforms into a spiral expanding vortex while rising through the water column. Such a spiral vortex motion has never been reported before for marine gas seepage and might represent an important process with strong implication on plume dynamics, dissolution behavior, gas escape to the atmosphere, and is considered very important for respective modeling approaches
    corecore