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The origin of low-frequency variability of double-gyre
wind-driven � ows

by Janine J. Nauw1 and Henk A. Dijkstra1

ABSTRACT
Bifurcation analysis on � ows in a two-layer shallow-water model is used to clarify the dynamical

origin of low-frequency variability of the double-gyre wind-driven ocean circulation. In many
previous model studies, generic low-frequency variations appear to be associated with distinct
regimes, characterized by the level of kinetic energy of the mean � ow. From these transient � ow
computations, the current view is that these regimes, and transitions between them, arise through a
complex nonlinear interaction between the mean � ow and its high-frequency instabilities (the
eddies). On the contrary, we demonstrate here, for a particular (but relevant) case, that the origin of
these high- and low-energy states is related to the existence of low-frequency instabilities of
steady-state � ows. The low-frequencymodes have distinct spatial patterns and introduce preferential
patterns oscillating on interannual to decadal time scales into the � ow. In addition, these low-
frequency modes are shown to be robust to the presence of (idealized) topography; the latter may
even have a destabilizingeffect.

1. Introduction

The existence of low-frequency variability in the North-Atlantic climate has been
demonstrated through many observational studies; for example, in large-scale sea surface
temperature (SST) and sea-level pressure patterns (Deser and Blackmon, 1993; Kushnir,
1994; Levitus, 2000). There is currently debate on whether internal variability of the ocean
circulation signi� cantly contributes to the large-scale climate � uctuationson interannual to
interdecadal time scales. On the interdecadal time scale, the ocean seems to be in a good
position since preferred spatio/temporal patterns arise through instabilitiesof the thermoha-
line circulation (Huck et al., 1999; Colin de Verdière and Huck, 1999; Te Raa and Dijkstra,
2001). However, both observational and model studies indicate that variability on the
interannual time scale can probably be totally accounted for by variability of the
atmosphere coupled to a more or less dynamically passive ocean (Delworth, 1996). The
decadal time scale variability possibly can be viewed as an intermediate case, where both
the atmosphere as well as the ocean are dynamically involved (Latif and Barnett, 1994).

Complication to this picture arises because many model studies have indicated that the
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ocean circulation displays internal variability on subannual to decadal time scales; i.e., on
time scales larger than those arising through mesoscale eddy activity (Cox, 1987; Miller et
al., 1987). A prototype model for this problem is a wind-driven, single- or double-gyre
� ow in a rectangular basin. Basically, both situations are extreme cases of the ‘real’ North
Atlantic situation, with the single-gyre model completely neglecting the subpolar gyre and
the double-gyre model overestimating its presence. Most of the studies have used the
traditional methods of computing transient � ows at several values of parameters and
determining statistical properties of the resulting complex � ows. For example, EOF
analysis is used to determine dominant patterns of variability and spectra of time series of
characteristic quantities (McWilliams, 1996) are calculated.

In a two-layer quasi-geostrophic model with a symmetric double-gyre forcing, Berloff
and McWilliams (1999) compute trajectories for � ve values of the lateral friction
coef� cient, AH, for a � ow in a basin of realistic size. For the highest value of the friction
( AH 5 1200 m2 s21), a nonsymmetric steady state is found. When lateral friction is
decreased, the � ow � rst displays variability at particular frequencies and with distinct
variability patterns. At AH 5 1000 m2 s21, quasi-periodic variability is found with
dominant frequencies in the intermonthlyand interannual range, which correspond to those
found in a 1.5-layer model for a similar value of the friction. At smaller friction, a more or
less broader spectrum appears with increased energy in the low-frequency range. At AH 5

800 m2 s21, the behavior of the time series is termed ‘chaotic’ and at AH 5 600 m2 s21,
the � ow seems to be concentrated near three states with different total energy. These states
are characterized by a different penetration length of the eastward jet and the presence or
absence of oscillations with dipole-type patterns. Similar low-frequency behavior is found
in the study of McCalpin and Haidvogel (1996), using a quasi-geostrophic model. The
‘quasi’ stable high-energy periods show a free jet, extending far into the basin, which is
hardly showing any meanders and on which only weak eddies are formed. The low-energy
state is characterized by extensive meandering and eddy formation in the region just
beyond the separation point, so that the existence of a free jet is not always obvious. The
dynamical view they provide is rather descriptive but the central ingredient is ‘eddy-jet’
interaction, which is responsible for formation of rings and evolution of meanders.

Without any further analysis techniques of the dynamical behavior of the � ow, the origin
of this low-frequency variability of western boundary currents and midlatitude jets would
remain obscure. This understanding is now developing and has been initiated by bifurca-
tion studies, which have determined the structure of steady states and large-scale instabili-
ties in idealized models (Cessi and Ierley, 1995; Jiang et al., 1995; Speich et al., 1995;
Dijkstra and Katsman, 1997; Primeau, 1998; Chang et al., 2001; Simonnet et al., 2001a, b;
Simonnet and Dijkstra, 2001). For example, it has been shown that asymmetric steady
states exist through spontaneous symmetry breaking and that the � rst Hopf bifurcations
introduce intermonthly and interannual variability. Usually, only the � rst couple of Hopf
bifurcations are determined and the periodic orbit arising from the � rst Hopf bifurcation is
followed (Dijkstra, 2000). In fact, Berloff and McWilliams (1999) heavily use the
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knowledge of this dynamically (fairly robust) picture to interpret their results at high
friction, but in the very small friction regime turn to more traditional interpretationsby lack
of the knowledge of the route to complexity in these � ows. In the latter regime, they � nd no
direct relationship between the patterns of the low-frequency � ow and the patterns which
destabilize the steady state at the Hopf bifurcations. Although not explicitly stated, this
may suggest to modelers that analysis of the � rst couple of bifurcations does not help to
explain the � ows in the ‘realistic’ regime.

Here, bifurcation analysis and trajectory computation are used to aim to clarify the
relation between the sequence of Hopf bifurcations and low-frequency behavior which is
associated with high- and low-energy states. As a � rst step, a weakly to mildly nonlinear
(relatively small basin/low forcing) regime is considered within a two-layer shallow-water
model context. The spectrum of the double-gyre � ows in this model shows instabilityof all
the interesting modes over a reasonable range of the wind stress strength. It is shown that
low-frequency variability is associated with the destabilizationof asymmetric steady states
to a particular (low-frequency) mode. Although this mode is damped at the � rst Hopf
bifurcation, it plays a major role in the transient � ow at stronger forcing (or lower friction)
by being responsible for the transitions between high- and low-energy states. To demon-
strate that this is not solely characteristic for the � at-bottom case, the modes are shown to
be robust to the presence of two (idealized) types of bottom topography.

2. Model and methods

The two-layer shallow-water equations are solved in a rectangular basin with horizontal
dimensions of 1000 3 2000 km located on a b-plane centered at 45N. Bottom topography
may be present giving a total depth of H0 2 Hb( x, y), where H0 represents the constant
depth in the � at bottom case.

a. Description of the model

Both layers have a constant density r1 and r2, with r2 . r1. Laplacian lateral friction is
present with (eddy) lateral mixing coef� cient AH. The � ow is driven by a stationary wind
stress pattern (t1

x, t1
y). For each layer i 5 1, 2, the governing equations are (Holland and

Lin, 1975)
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where Ui 5 uihi and Vi 5 vihi are the volume � uxes per unit length, (ui, vi) the zonal and
meridional velocities and hi is the thickness of layer i. In the b-plane approximation, f 5
f0 1 b0y, f0 is the Coriolis parameter and b0 is the local meridional derivative of f. The
rigid-lid approximation and the condition of continuity of normal stress at the interface of
the layers become

h1 1 h2 5 H0 2 Hb~x, y! (2a)

= p2 5 = p1 2 r0g9 = h1 (2b)

The reduced gravity is de� ned by g9 5 g(r2 2 r1)/r0, where r0 is a reference density.
No-slip boundary conditions are applied at all lateral walls. The standard values of the
parameters can be found in Table 1 and are similar to those used in Speich et al. (1995).
The equilibrium depth of each layer in the � at bottom case is indicated by H1 and H2.

The stress term in the right-hand side of Eqs. (1a, b) represents the wind stress forcing in
the top layer and a bottom friction in the second layer. For the top layer, a double-gyre wind
stress is chosen

t1
x 5 2t0 cos ~2py/D! (3a)

t1
y 5 0 (3b)

and for the second layer, we took a linear bottom friction, i.e.

t2
x 5 2r0RU2 (4a)

t2
y 5 2r0RV2. (4b)

There is no interfacial friction and hence in steady state, the lower layer is motionless.
Nonzero � ow in the lower layer can only occur through transient effects such as the
presence of, and interaction between, baroclinic instabilities (Pedlosky, 1996).

The wind stress amplitude t0 will be used as a control parameter, while the values of the
friction coef� cients remain � xed. Reason for choosing the relatively small basin is that the
instabilities and location of the steady state branches are well known for the 1.5-layer
set-up (Speich et al., 1995) and provide an easy starting point. The small basin size is not

Table 1. Standard values of the dimensional parameters in the two-layer shallow-water model. The
wind stress amplitude t0 will be used as control parameter.

Parameter Value Parameter Value

L 1.0 z 106 m D 2.0 z 106 m
g 9.8 m s2 2 r0 1.0 z 103 kg m23

R 5.0 z 1028 s21 AH 3.0 z 102 m2 s21

f0 1.0 z 1024 s21 b0 1.8 z 1021 1 m21 s21

r1 1.0 z 103 kg m23 r2 1.002 z 103 kg m23

H1 7.0 z 102 m H2 3.3 z 103 m
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expected to have much effect on the dynamical picture, because bifurcation diagrams for
1.5-layer models with larger basin sizes and even with full continental geometry are
qualitatively similar to those of a small rectangular basin (Dijkstra and Molemaker, 1999;
Schmeits and Dijkstra, 2001).

b. Numerical methods

After discretizing the equations on an Arakawa C-grid, two different numerical
methodologies are used: standard transient � ow computation and bifurcation analysis. The
standard resolution used is Dx 5 Dy 5 20 km, similar to that in Jiang et al. (1995) and
Speich et al. (1995). An estimate of the Munk boundary layer thickness ( AH/b0)1/3

calculated with the use of Table 1 is about 25 km. This resolution is suf� cient to resolve the
� ows in the parameter regime considered. For example, there is a close resemblance
between the patterns of the eigenmodes and the positions of the � rst Hopf bifurcations of
Speich et al. (1995), who also used a resolution of 20 km, and in Dijkstra and Molemaker
(1999) where a very high resolution in the western boundary layer is used.

To compute transient � ows, the traditional method of integrating forward in time with
the leap-frog method is used (with a timestep Dt 5 30 min), similar to that in Holland
(1973). The computationalmode of the leap-frog scheme is damped with a three-point time
smoother (Asselin, 1972) on the components of the velocity (ui, vi) and on the layer
thicknesses (hi) and the rigid-lid approximation is implemented in a similar way as in
Bleck and Boudra (1981).

To perform bifurcation analysis, the continuation techniques as described in Schmeits
and Dijkstra (2001) are used. Since the latter techniques are not (yet) standard, a short
description is given (for an extensive description, see Dijkstra (2000)). Steady-state
solutions of the equations satisfy a set of nonlinear algebraic equations of the form:

F~u, p! 5 0. (5)

Here u is the d-dimensional vector consisting of the unknowns (velocities, layer thick-
nesses and pressures) at the grid points and p is the p-dimensional vector of parameters. To
determine branches of steady solutions of the equations as one of the parameters (say m) is
varied, the pseudo-arclength method is used. The branches (u(s), m(s)) are parameterized
by an ‘arclength’ parameter s. An additional equation is obtained by ‘normalizing’ the
tangent

u‚ 0
T~u 2 u0! 1 ‚m0~m 2 m0! 2 Ds 5 0 (6)

where (u0, m0) is an analytically known starting solution or a previously computed point on
a particular branch and Ds is the steplength. The system (5, 6) is solved by the
Newton-Raphson method.

When a steady state is determined, the linear stability of the solution is considered and
transitions that mark qualitative changes, such as transitions to multiple equilibria
(pitchfork or saddle node bifurcations) or periodic behavior (Hopf bifurcations), can be
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detected. The linear stability analysis amounts to solving a generalized eigenvalueproblem
of the form

!x5s@x (7)

where ! and @ are nonsymmetric matrices. Bifurcations are detected from crossings of the
eigenvalue s 5 sr 1 isi with the imaginary axis. Solution techniques for these problems
are presented in Dijkstra (2000). Here, the problem is solved with the Simultaneous
Iteration Method (Steward and Jennings, 1981) and only a few of the most unstable/least
stable modes (with sr near zero) are calculated.

3. Results

The results are presented along the following path. First, the � at bottom case is
considered and the basic steady state structure is computed. This will be an imperfect
pitchfork bifurcation as in the 1.5-layer case (Speich et al., 1995), because the bottom layer
is motionless for steady � ows. However, in the two-layer model new instabilities appear
through baroclinic physics (Section 3a) and their relation with the transient � ows is
analyzed in Section 3b. Subsequently, the in� uence of two particular types of bottom
topography is considered (Section 3c).

a. Basic bifurcation diagram: Flat bottom case

With a � at bottom, the equilibrium layer thicknesses are H1 5 700 m and H2 5

3300 m as shown in Table 1, giving a total thickness H0 5 4000 m. Steady states are
computed, using t0 as a control parameter and as a norm of the solution the minimum upper
layer thickness, h1,min, is plotted. In Figure 1 the drawn (dashed) lines represent stable
(unstable) steady states. An imperfect pitchfork bifurcation is found with a unique steady
solution for values below t0 5 6.7 3 1022 Pa and multiple steady states beyond this value.

Along the upper branch in Figure 1, the results of the linear stability analysis indicate
that the steady state becomes unstable through a sequence of Hopf bifurcations (indicated
by triangular markers). The stability of the isolated branch has not been calculated because
it is expected that the Hopf bifurcations which appear on this branch have similar patterns
and frequencies as those on the upper branch, as in the 1.5-layer case (Dijkstra and
Molemaker, 1999). Moreover, it has been found from the computations of the transient
� ows (Section 3b below) that only at some locations in parameter space, signatures of the
instabilities of the lower branch of steady states are noticeable. Hence, these instabilities
are not considered in further detail.

At each Hopf bifurcation, a complex conjugate pair of eigenvalues s 5 sr 6 isi

crosses the imaginary axis. The corresponding eigenvector x 5 xR 1 ixI (obtained from
(7)) provides the spatial pattern of the mode which destabilizes the steady state. The time-
dependent behavior of this mode P(t) locally near the Hopf bifurcation is given by

P~t! 5 esrt@xR cos ~sit! 2 xI sin ~sit!# (8)
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with angular frequency si and growth rate sr. The dimensional period of oscillation 3 is
given by 3 5 2p/si. The locations of the Hopf bifurcations H1, . . . , H5 and the
oscillation periods of each mode are presented in the second column of Table 2. The
propagation of the mode can be followed by looking for example at P(2p/ 2si) 5

P(2 1
4
3) 5 xI and then at P(0) 5 xR.

To investigate whether the character of the mode is baroclinic or barotropic, a

Figure 1. Bifurcation diagram of the two-layer shallow-water model. To monitor the solutions the
minimum upper layer thickness h1 , m in is plotted versus the wind stress strength t0 . Drawn
(dashed) lines indicate stable (unstable) steady states and the markers labeled H1 , . . . , H5

indicate Hopf bifurcations.

Table 2. (a) Values of t0 (Pa) at which modes destabilize the steady states along the upper branch in
Figure 1. (b) Oscillation periods of these modes at the Hopf bifurcations. Results are shown for the
(standard) � at bottom case and for two different cases of bottom topography discussed in Section 3c.

Hopf bifurcation t0 (� at) t0 (‘shelf’) t0 (‘shelf 1 ridge’)

H1 6.2 z 1022 6.6 z 1022 7.2 z 1022

H2 6.6 z 1022 7.4 z 1022 7.4 z 1022

H3 7.4 z 1022 7.8 z 1022 7.8 z 1022 (a)
H4 8.0 z 1022 8.5 z 1022

H5 8.7 z 1022

Hopf bifurcation 3 (� at) 3 (‘shelf’) 3 (‘shelf 1 ridge’)

H1 4.8 mo 3.2 mo 2.7 mo
H2 2.8 mo 3.4 mo 3.1 mo
H3 5.6 mo 2.1 mo 26.1 yr (b)
H4 2.6 mo 5.3 yr
H5 12.7 yr
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pseudostreamfunction, ci (i 5 1, 2), will be plotted for both layers, de� ned by ui 5

2(]ci/] y) and vi 5 (]ci/] x). With this de� nition the � ow is tangent to lines of
constant ci.

The upper layer streamfunction of the steady state, which becomes unstable at Hopf
bifurcation H1 at a wind stress strength of t0 5 6.2 3 1022 Pa, is shown in Figure 2a. At
this wind stress strength, the � ow already shows a strong jet and well-developed
recirculation gyres. The imaginary and real parts of the eigenvector (both for the upper and
lower layer) are plotted in Figures 2b–e. In both layers, the mode is localized in the jet and
the propagation is eastward. If we compare the positions of the extrema in the upper layer
streamfunction (Fig. 2c) with the ones in the lower layer streamfunction at a quarter of a
period earlier (Fig. 2d), we see a phase difference of approximately 1

4
3, which is

characteristic of a baroclinic instability. If we could superpose these perturbations linearly
on the steady state, we would obtain a meandering jet with an oscillation period of 4.8
months. This mode clearly can be identi� ed with the � rst destabilized baroclinic mode of
the two-layer quasi-geostrophic model (Dijkstra and Katsman (1997), their Fig. 9 or
Dijkstra et al. (1999), their Figs. 21a, b).

The steady state and the real and imaginary parts of the mode at Hopf bifurcation H2

(t0 5 6.6 3 1022 Pa) are plotted in Figure 3. At this value of t0, the mean state has hardly
changed with respect to that in Figure 2a. The oscillatory mode has a basin-wide structure,
resembling westward traveling Rossby basin modes, which interact with the recirculation
gyres. The period of this mode (32 5 2.8 mo) is indeed in the intermonthly range and its
structure is fairly barotropic. The perturbations seem to be growing in the north (south) of
the subpolar (subtropical) recirculation gyre, where the velocity of the steady state is in the
same direction as the phase velocity of the perturbations. At the location of the jet, the
perturbations of opposite sign would cause the strength of the jet to vary, while the
recirculation gyres will show meandering when the perturbations are superposed on the
steady state. This mode can be identi� ed with the � rst barotropic Rossby basin mode,
which also destabilizes in the 1.5-layer shallow-water model (Dijkstra and Molemaker
(1999), their Figs. 6a, b); the latter is related to the � rst basin mode in the quasi-geostrophic
model (Dijkstra and Katsman (1997), their Fig. 5).

The steady state and the patterns of the destabilizing mode at Hopf bifurcation H3 (t0 5

7.4 3 1022 Pa) are shown in Figure 4. The oscillation period of this mode (33 5 5.6 mo) is
quite similar to that of the mode which destabilizes at Hopf bifurcation H1. The spatial
structure has a baroclinic character but its extent is broader and it is more aligned with the
steady state jet. As a next baroclinic mode, one would have expected the antisymmetric
baroclinic mode of the 2-layer quasi-geostrophic model as in Dijkstra and Katsman (1997)
(their Fig. 10), but this mode clearly looks more like the third symmetric baroclinic mode,
presented in Dijkstra et al. (1999) (their Figs. 21e, f). The asymmetry of the steady-state jet
apparently gives a preference for modes, which are symmetric with respect to the jet axis,
but the reason for this preference is not easily explained. The mode arising at Hopf
bifurcation H4 (t0 5 8.0 3 102 2 Pa) resembles the mode at Hopf bifurcation H2 (Fig. 5)
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Figure 2. Panel (a) shows the upper layer streamfunctionof the steady state at Hopf bifurcationH1 at
a wind stress of t0 5 6.2 3 1022 Pa. Panels (b) and (c) show the imaginary and real parts of the
perturbation of the upper layer streamfunction and panels (d) and (e) of the lower layer
streamfunction.The mode has a period of 31 5 4.8 mo.
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Figure 3. Panel (a) shows the upper layer streamfunctionof the steady state at Hopf bifurcationH2 at
a wind stress of t0 5 6.6 3 1022 Pa. Panels (b) and (c) show the imaginary and real parts of the
perturbation of the upper layer streamfunction and panels (d) and (e) of the lower layer
streamfunction.The mode has a period of 32 5 2.8 mo.
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Figure 4. Panel (a) shows the upper layer streamfunctionof the steady state at Hopf bifurcationH3 at
a wind stress of t0 5 7.4 3 1022 Pa. Panels (b) and (c) show the imaginary and real parts of the
perturbation of the upper layer streamfunction and panels (d) and (e) of the lower layer
streamfunction.The mode has a period of 33 5 5.6 mo.
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Figure 5. Panel (a) shows the upper layer streamfunctionof the steady state at Hopf bifurcationH4 at
a wind stress of t0 5 8.0 3 1022 Pa. Panels (b) and (c) show the imaginary and real parts of the
perturbation of the upper layer streamfunction and panels (d) and (e) of the lower layer
streamfunction.The mode has a period of 34 5 2.6 mo.
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and one of the intermonthly modes in the 1.5-layer model (Dijkstra and Molemaker, 1999).
Again, the extent of this mode is basin wide and its period is short (34 5 2.6 mo), which
indicates that this is another destabilized Rossby basin mode.

The steady-state streamfunction at a wind stress strength of t0 5 8.7 3 1022 Pa and the
imaginary and real parts of the streamfunction of the mode, which destabilizes at H5 are
shown in Figure 6. This mode has an oscillation period of 12.7 yr, which is in the
low-frequency range. The spatial pattern of the mode displays a strong alignment with the
direction of the jet; its extrema are located along a line through the extrema in the
steady-state streamfunction of the subtropical and subpolar gyre. It can be seen from
Figures 6b–d that this mode has a baroclinic character. The � ow imagined of this
perturbation superposed on the steady state is one in which the jet is strengthened and
weakened. A barotropic equivalent of this mode, called a ‘gyre’ mode with a shorter
(interannual) time scale, has been found in 1.5-layer shallow-water models (Speich et al.
(1995), their Fig. 7) and in quasi-geostrophic barotropic models (Dijkstra and Katsman
(1997), their Fig. 6). The sequence of Hopf bifurcations on the upper branch nicely shows
that the classical baroclinic modes and the barotropic Rossby basin modes destabilize
alternately and that eventually a low-frequency baroclinic ‘gyre’ mode destabilizes.

b. Transient � ows: Flat bottom case

Having the structure and frequencies of the � rst modes which destabilize the steady
states at the upper branch, next transient � ows are computed by integrating the governing
equations forward in time. As an initial condition, the state of rest or one of the steady
states found with the continuation method is taken. Time-dependent � ows have been
calculated for several distinct values of the wind stress parameter t0 and as an indicator of
the character of the � ow, we now use the (5-year) time-averaged minimum upper layer
thickness, h# 1,min. In Figure 7, the bifurcation diagram together with the minimum upper
layer thickness of the transient � ows are plotted; the marker shows its average and the
‘error’ bar its range over time.

For the values up to t0 5 6.0 3 1022 Pa, a steady double-gyre � ow in the upper layer is
found with a motionless lower layer. The correspondence of the values of h1,min for both
the transient � ow code and the continuation code (which are totally different) is reassuring
that both codes obtain similar solutions. The time series of the basin integrated kinetic
energy, %k, de� ned as

%k 5 O
i51

2 r i

2 E h i~u i
2 1 v i

2! dxdy (9)

is plotted at t0 5 6.3 3 1022 Pa in Figure 8a. A high-frequency periodic orbit is found and
the Fourier spectrum of this time series (Fig. 8b) has a broad peak centered around a period
3 5 4.74 mo and a very small peak near its � rst harmonic, at 3 5 2.34 mo. The period of
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Figure 6. Panel (a) shows the upper layer streamfunctionof the steady state at Hopf bifurcationH5 at
a wind stress of t0 5 8.7 3 1022 Pa. Panels (b) and (c) show the imaginary and real parts of the
perturbation of the upper layer streamfunction and panels (d) and (e) of the lower layer
streamfunction.The mode has a period of 35 5 12.7 yr.
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this orbit is indeed similar to the period at Hopf bifurcation H1 (31 5 4.79 mo) because
the forcing (t0 5 6.3 3 1022 Pa) is only slightly supercritical.

The time series of the basin integrated kinetic energy for t0 5 7.0 3 1022 Pa (Fig. 8c)
consists of two frequencies. This is con� rmed by the spectrum of this time series (Fig. 8d),
showing two broad peaks centered around 3 5 4.0 mo and around 3 5 1.94 mo. This
signal consists of two oscillations, which originate through the instabilities at Hopf
bifurcations H1 and H2, (t0, 31) 5 (6.2 3 1022 Pa, 4.8 mo) and (t0, 32) 5 (6.6 3

1022 Pa, 2.8 mo). The second peak is higher than the � rst, because it possibly also contains
the � rst harmonic of the � rst peak.

Within the small interval 8.0 3 1022 , t0 , 8.5 3 1022 Pa, two different time-
dependent solutions are found when starting from different initial conditions. A solution
with a value for h# 1,min around 570 m is obtained when the transient � ow computation is
initialized with a steady state solution of the upper branch or with the state of rest. The
solution characterized by a value of h# 1,min around 520 m is obtained by initializing with a
steady state solution of the isolated branch. The last � ve years of the time series of h1,min

are shown in Figure 9a for both trajectories at t0 5 8.0 3 1022 Pa. The time series of the
upper branch solution still seem quite periodic, while the time series of the lower branch
already shows variability on several different time scales. The 5-year averaged upper layer
thickness of the solution with h# 1,min 5 572 m is plotted in Figure 9b and shows a western
boundary current, which de� ects southward after separation. The 5-year averaged solution
with h# 1,min 5 526 m in Figure 9c, displays a northward de� ected current.

Figure 7. Bifurcationdiagramshowing the minimum upper layer thicknessh1 ,m in versus the strength
of the wind stress t0 for the steady states (as in Fig. 1). The markers indicate the average minimum
upper layer thickness h# 1 , m in of the computed time-dependent solutions and the bars indicate their
range.
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At values of t0 . 8.5 3 1022 Pa, no multiple time-dependent � ows are found anymore.
The time series of the basin-integratedkinetic energy at t0 5 8.5 3 1022 Pa of the one with
h# 1,min 5 570 m (Fig. 10a) displays a low-frequency oscillation with a period of 18 yr
together with high-frequency oscillations. At a higher wind stress forcing of t0 5 1.05 3

1021 Pa the time series of the basin integrated kinetic energy shows irregular behavior
(Fig. 10b) with large � uctuations in the kinetic energy on intervals of approximately 10 yr.
In order to � nd the pattern of variability which is associated with the low-frequency
oscillations at these values of the wind stress strength, the streamfunctions of both layers,
ci, as de� ned in Section 3a, are sampled each month over a 60-year period. The number of
degrees of freedom is reduced by performing a standard Principal Component Analysis
(PCA). The resulting 10 leading Principal Components (PCs), which account for 99.9% of

Figure 8. (a) Time series of the basin integrated kinetic energy at a wind stress of (a) t0 5 6.3 3
1022 Pa and (c) t0 5 7.0 3 1022 Pa; (b) and (d) show the Fourier power spectra of (a) and (c),
respectively.
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the variance at t0 5 8.5 3 1022 Pa and 92% at t0 5 1.05 3 1021 Pa, are the input for a
Multichannel Singular Spectrum Analysis (MSSA) (Plaut and Vautard, 1994). A window
length of M 5 20 yr and M 5 15 yr is taken at t0 5 8.5 3 1022 Pa and t0 5 1.05 3

1021 Pa, respectively. From the MSSA analysis, a low-frequency statistical mode is found
with an oscillationperiod 3 5 18 yr at t0 5 8.5 3 1022 Pa which explains 22% of the total
variance within the 20-year window. Snapshots of the upper and lower layer streamfunc-
tion of the reconstructed components are shown in Figure 11. The � elds are plotted at

Figure 9. (a) The last � ve years of the time series of the minimum upper layer thickness, h1 , m in , for
the two time-dependentsolutionsat a wind stress of t0 5 8.0 3 102 2 Pa. Five-year averages of the
upper layer thickness of the upper time series in (b) and the lower time series in (c).
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approximately the same stages of the oscillation as the low-frequency mode destabilizing
at H5 (Fig. 6). Note that the latter mode is still linearly stable at this wind stress strength
(see Table 2a). There is a good correspondence between the upper layer streamfunctions of
the low-frequency mode and of the time-dependent variations of the statistical mode.
However, the vertical structure of the low-frequency mode is clearly baroclinic, while the
time variation of the statistical mode is a mix of a baroclinic phase (i.e., at t 5 0, Figs. 11a,

Figure 10. Time series of the basin integrated kinetic energy at a wind stress of t0 5 8.5 3 1022 Pa
in panel (a) and t0 5 1.05 3 1021 Pa in (b).
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Figure 11. Reconstructedcomponent of the low-frequencystatistical mode obtained through MSSA
analysis. Upper layer streamfunction at t0 5 8.5 3 102 2 Pa at t 5 0 in panel (a) and at t 5 4.5 yr
in panel (b) and the lower layer streamfunction in (c) and (d). The period of this oscillation is 3 5
18 yr and it explains 22% of the variance within the 20-year window.



c) and a more barotropic phase (i.e., at t 5 4.5 yr, Figs. 11b, d). Even with these
differences in the lower layer response, the correspondence between the upper layer
patterns supports the notion that the dominant low-frequency time variations in the
transient � ow can be attributed to the presence of the low-frequency mode, which
destabilizes the steady state at Hopf bifurcation H5. A similar dominant low-frequency
statistical mode is found from the transient � ow at t 5 1.05 3 1021 Pa, having a period of
3 5 8.0 yr and explaining 54% of the variance within the 15-year window. Snapshots of
the upper and lower layer streamfunction of this statistical mode are shown in Figure 12.
The reconstructed component now shows an even more barotropic signal, which explains
its decrease in oscillation period. The shape of the anomalies in the upper layer still show
much resemblance with the mode which is destabilized at Hopf bifurcation H5. Hence,
there seems to be a tendency toward barotropic modi� cation of the ‘gyre’ mode with
increasing t0.

The correspondence between the pattern of low-frequency variability in the transient
� ow and the ‘gyre’ mode is motivation to investigate the instantaneous � ows for which the
time series are plotted in Figure 10. Both time series indicate different levels of total kinetic
energy associated with the low-frequency behavior. In Figure 13, two instantaneous
streamfunctions are plotted for the case t0 5 1.05 3 1021 Pa at t 5 9 yr (at which the
transient � ow has high kinetic energy) and at t 5 15 yr (at which the transient � ow has low
kinetic energy). In the high-energy state (Figs. 13a/c), the zonal jet is strong and
meandering is weak. In the low-energy state (Figs. 13b/d), meandering is very strong and a
‘ring’ is present. Both states have similar characteristics as the high- and low-energy states
found in quasi-geostrophic models (McCalpin and Haidvogel, 1996; Berloff and McWil-
liams, 1999). Coupling these characteristics with the earlier correspondence of the
low-frequency behavior strongly suggests that the appearance of low-frequency variability
in the form of high- and low-energy states can be attributed to the destabilization of the
baroclinic ‘gyre’ mode.

c. Sensitivity to bottom topography

In this section, we aim to demonstrate that the low-frequency mode is not solely
characteristic for the � at bottom case. The nice element of the two-layer set-up is that even
with bottom topography, the steady-state structure is still the same as for the � at bottom
case, since the lower layer is motionless. Hence, only the instabilities, i.e., the position and
patterns of the Hopf bifurcations are modi� ed. Two shapes of the bottom topography are
considered: one of these mimics a continental shelf with the following simple shape of the
bottom topography,

Hb~x, y! 5 5 hb

2 F 1 1 cos X 2px

l0
D G 0 , x ,

1
2

l0

0.0 otherwise

(10)
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Figure 12. Reconstructedcomponent of the low-frequencystatistical mode obtained through MSSA
analysis. Upper layer streamfunction at t0 5 1.05 3 1021 Pa at t 5 7.5 yr in panel (a) and at t 5
9.5 yr in panel (b) and the lower layer streamfunction in (c) and (d). The period of this oscillation
is 3 5 8.0 yr and it explains 54% of the variance within the 15-year window.



Figure 13. In panels (a) and (c) are snapshots of the streamfunctions of the upper and lower layer
during the high-energyperiod at t 5 9 yr; (b) and (d) during the low-energy period at t 5 15 yr at
t0 5 1.05 3 1021 Pa.



where hb 5 100 m is the maximum height of the shelf and l0 5 600 km is its wavelength.
The effect of a continental shelf in combination with a mid-basin ridge is represented using
the following shape of the bottom topography

Hb~x, y! 5 5
hb

6 F 1 1 cos X 2px

l0
D G 0 , x ,

1

2
l0

hb

2 F 1 1 cos X 2px

l0
D G 1

2
l0 , x ,

3

2
l0

0.0 otherwise

(11)

here hb 5 300 m and l0 5 400 km. The height of both types of bottom topography has
been chosen rather small compared to the total depth to compensate for the much larger
effect of bottom topography on a two-layer � ow than in a � ow with realistic strati� cation.

The values of t0 and the oscillation periods of the destabilizing modes associated
with the Hopf bifurcations of the case with the ‘shelf’ topography can be found in the
third column of Table 2. The position of the � rst baroclinic Hopf bifurcation, H1, is
moved from t0 5 6.2 3 1022 Pa toward a slightly higher value of t0 5 6.6 3 1022 Pa,
which indicates that this type of bottom topography increases the stability. The
patterns of the modes, which destabilize the steady state at the � rst and second Hopf
bifurcation, H1 and H2, are similar to the � rst and third Hopf bifurcations in the � at
bottom case (on the basis of their pattern), but are now propagating in a northwest to
southeast direction instead of in the west-east direction, as in the standard case. The
third Hopf bifurcation H3 is similar to the second (and fourth) Hopf bifurcation of the
� at bottom case. The basin mode structure has become more pronounced, so that only
the perturbations in the subtropical recirculation gyre are visible, while those in the
subpolar recirculation gyre seem absent (not shown).

The low-frequency mode, which is now the fourth Hopf bifurcation H4, has moved
toward a smaller value of the wind stress forcing, from t0 5 8.7 3 1022 Pa in the � at
bottom case toward t0 5 8.5 3 1022 Pa in the case with a ‘shelf’ topography. The
spatial pattern of the mode (Fig. 14) has not changed dramatically compared to the � at
bottom case (Fig. 6), although some effect of the bottom topography is visible in the
lower layer pattern. However, the oscillation period has changed substantially from
3 5 12.7 yr to 3 5 5.3 yr. The perturbations in the lower layer of the � at bottom case
are growing under the subpolar gyre and follow the � ow of the subtropical recircula-
tion gyre. With the ‘shelf’ topography, the perturbations are moving more southwest-
ward in a direction along the contours of f/h#2 south and southeast of the subtropical
recirculation gyre. These contours are slightly more tilted in a northeast/southwest
fashion compared to the � at bottom case as can be seen by comparing Figure 15a (� at
bottom case) and Figure 15b (‘shelf case’).

For the ‘shelf 1 ridge’ topography, the t0 locations of the Hopf bifurcations and the
oscillation periods of the modes can be found in the fourth column of Table 2. The
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low-frequency mode now appears as the third Hopf bifurcation H3; its period is 26 yr and
its pattern is shown in Figure 16. The upper layer pattern is hardly modi� ed by the bottom
topography and can be quite easily related to the pattern at the � fth Hopf bifurcation of the

Figure 14. Panel (a) shows the upper layer streamfunctionof the steady state at Hopf bifurcation H4

in the case with the ‘shelf’ bottom topography of (10) at a wind stress of t0 5 8.5 3 1022 Pa.
Panels (b) and (c) show the imaginary and real parts of the perturbation of the upper layer
streamfunction and panels (d) and (e) of the lower layer streamfunction.The mode has a period of
3 5 5.3 yr.
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� at bottom case (Fig. 6). The lower layer perturbation � ow is now strongly modi� ed by the
presence of the bottom topography. The dipole structure of the contours of f/h# 2 of more or
less equal strength in the � at bottom case (Fig. 15a) has now almost changed into a
monopole structure (Fig. 15c). The subtropical maximum, around which the patches of
vorticity were transported in the previous two cases, has almost disappeared, which
constrains the perturbations in the area below the subpolar gyre. However, what is most
important is the shift of the Hopf bifurcation to much lower wind stress forcing, from t0 5

8.7 3 1022 Pa toward t0 5 7.8 3 1022 Pa. Hence, this type of bottom topography is able
to destabilize the � ow to a low-frequency mode at much lower wind stress forcing, without
changing the upper-layer perturbation � ow much. Again, this type of mode has the
characteristics of weakening and strengthening the jet, when superposed on the steady
state, and can, therefore, cause the low-frequency alternations between high- and low-
energy states in the time-dependent � ow.

The impact of this destabilization of the low-frequency mode with the ‘shelf 1 ridge’
bottom topography (11) is now subsequently tested through transient � ow computations
again initiated with a steady state solution. For t0 5 8.0 3 1022 Pa, the time series of the
upper layer thickness indeed shows low-frequency behavior with an oscillation period of
about 3 5 11 yr (Fig. 17). The patterns of the statistical mode of low-frequency oscillation
have been analyzed with MSSA and the reconstructed pair, which explained most of the

Figure 15. Contours of f/h# 2 are plotted at the Hopf bifurcationassociated with low-frequency mode
in (a) the � at bottom case, in (b) with the ‘shelf’ topography of (10) and in (c) with the ‘shelf 1
ridge’ topography of (11).
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variance within the window (73%), has a similar pattern as in Figure 12. This con� rms that
this type of bottom topography induces a preference for the low-frequency mode. The main
conclusion from this section is that the low-frequency mode is not solely characteristic for

Figure 16. Panel (a) shows the upper layer streamfunctionof the steady state at Hopf bifurcation H3 in
the case with the ‘shelf 1 ridge’ bottom topography of (11) at a wind stress of t0 5 7.8 3 1022 Pa.
Panels (b) and (c) show the imaginary and real parts of the perturbationof the upper layer streamfunction
and panels (d) and (e) of the lower layer streamfunction.The mode has a periodof3 5 26 yr.
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the � at bottom case; that the period may be sensitive to the shape of the particular
topography, but that it remains of decadal time scale.

4. Discussion

For a particular case, consisting of a wind-driven, two-layer, shallow-water � ow in a
small 1000 3 2000 km basin, a connection has been established between the modes
destabilizing the steady states and low-frequency variability in the transient � ow which is
associated with the transitions between high- and low-energy states.

For the model here, the modes destabilizing at the � rst four Hopf bifurcations along the
primary branch of steady solutions have oscillation periods in the order of several months.
These modes are related either to baroclinic modes or to Rossby basin modes. The
baroclinic modes have also been found in the two-layer quasi-geostrophicmodel (Dijkstra
and Katsman, 1997) and are strongly related to those found in the classical Phillips model
(Phillips, 1954), except that they are localized in the jet and have to satisfy the basin
boundary conditions. Rossby basin modes have been found in many models of the
double-gyre (Speich et al., 1995; Dijkstra and Katsman, 1997; Chang et al., 2001) and
single-gyre (Sheremet et al., 1997) wind-driven ocean circulation. The mechanism and
time scale of the Rossby basin modes are easily related to the free Rossby basin modes in
the inviscid case, propagating on a motionless background � ow (Pedlosky, 1987).

At the � fth Hopf bifurcation, a low-frequency ‘gyre’ mode destabilizes, which has also
been found in many modeling studies of the double-gyre circulation (Dijkstra and
Katsman, 1997; Dijkstra and Molemaker, 1999; Simonnet et al., 2001a). Contrary to the
Rossby basin modes, the ‘gyre’ mode has no ‘free’ equivalent (Simonnet and Dijkstra,
2001). It originates from a (symmetry-breaking) shear instability which is unrelated to

Figure 17. Time series of the basin integrated kinetic energy at a wind stress of t0 5 8.0 3 1022 Pa
with the ‘shelf 1 ridge’ topography of (11).
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baroclinic processes and Rossby wave dynamics. The gyre mode has an interannual
oscillation period in the barotropic case, but here it appears to be modi� ed by baroclinic
processes, leading to a larger (decadal) oscillation period. An overview of the ordering and
types of modes found in simpli� ed models of the wind-driven circulation is presented
(schematically) in Figure 18. In the two-layer shallow-water model, all the different modes
in the spectrum destabilize close to each other in parameter space, contrary to the two-layer
quasi-geostrophic model, which shows a strong separation of these modes. Therefore, in
the two-layer shallow-water model interesting time-dependent behavior is already attained
at relatively low forcing and can be analyzed near criticality.

Is this low-frequency behavior mainly associated with interactions of the high-frequency
instabilitiesor with the destabilizationof the low-frequency mode? The time mean state for
the trajectory at t0 5 8.5 3 1022 Pa is not very different from that of the unstable steady
state at H5. Moreover, the spectrum for the basin integrated kinetic energy is not broad
banded. Hence, the recti� cation of the mean state through the high-frequency instabilities
is only weak and the (self-) interactions of the high-frequencymodes cannot be responsible
for the low-frequency variability. Therefore, the low-frequency mode is responsible for
this behavior in the regime explored, as is also inferred from the dominant MSSA-pattern.

Figure 18. Schematic � gure of the destabilized modes in bifurcation diagrams of different types of
models.
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The dynamics associated with the destabilization of this mode strongly controls the
time-dependent � ow. This is not solely characteristic for the � at bottom case, because the
presence of two speci� c types of bottom topographydoes not remove the ‘gyre’ mode from
the spectrum, but causes the position of the Hopf bifurcation associated with this mode to
be moved toward lower values of the wind stress forcing. Low-frequency variability found
in other studies can probably also be associated with the presence of a ‘gyre’ mode. For
example, in Katsman et al. (2000), the dynamical in� uence of a deep western boundary
current is modeled in the lower layer of a quasi-geostrophic model. It was shown that
low-frequency variability (associated with a similar pattern as the barotropic ‘gyre’ mode)
becomes prominent in the time-dependent behavior as the strength of a deep western
boundary current is increased.

Can the presence of such oscillatory ‘gyre’ modes explain the low-frequency variability
of the wind-driven ocean circulation in the large-basin/high-forcing case (McCalpin and
Haidvogel, 1996; Berloff and McWilliams, 1999)? Although it is impossible to demon-
strate more rigourously, there are several arguments to support such a conjecture. We will
go through these by discussing the deformation from the small-basin/low-forcing case,
considered here, toward this (more) ‘realistic’ case.

(i) The ‘gyre’ modes still appear when a basin with a larger dimension is taken
(Dijkstra and Molemaker, 1999) and they are even present in a basin with real
North-Atlantic continental geometry (Schmeits and Dijkstra, 2001). The reason is
that the presence of these modes is tightly coupled to the occurrence of multiple
equilibria (Simonnet and Dijkstra, 2001), which are still present in shallow-water
models of � ows in larger basins. Only the (localized) structure of western boundary
current/midlatitude jet system is important here, since this is the region where
nonlinear processes are important, and not the total basin wide � ow.

(ii) The ‘gyre’ modes will still appear on highly recti� ed mean states, as long as they are
suf� ciently asymmetric. In the high-forcing (or low-friction) case, many modes of
the classes mentioned above (Chang et al., 2001; Sheremet et al., 1997) will be
unstable. All modes except the ‘gyre’ mode will have relatively high frequencies
and will strongly interact and rectify the mean state. As shown in Simonnet and
Dijkstra (2001), the growth rate of the ‘gyre’ mode is dependent as the asymmetry
of the recti� ed mean state, becoming larger as the asymmetry increases. The
recti� ed mean states in low-friction cases still have an asymmetric structure
(McCalpin and Haidvogel, 1996; Berloff and McWilliams, 1999), which indicates
that one would still expect the ‘gyre’ modes to appear on these states. In fact, the
low-frequency EOF pattern in Berloff and McWilliams (1999) (their Fig. 15) found
in the high-friction/symmetrically-forced case has a similar structure as the ‘gyre’
mode. In this view, the effect of the high-frequency instabilities is only to rectify the
mean state and to add noise to the � ow, such that the low-frequency peak in the
spectrum, which is associated with the high- and low-energy states and caused by
the gyre mode, is broadened.
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Although one cannot exclude that more complex dynamical phenomena, such as
homoclinic or heteroclinic orbits play a role, the view above is elegant in that it is simple.
The heart of the physics of the low-frequency variability can be traced back to a particular
gyre mode and hence to the symmetry breaking shear instabilities. Since there is a distinct
pattern of variability associated with each particular low-frequency mode, one may try to
identify these in observations and output of high resolution ocean models.
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