29 research outputs found
Recommended from our members
Synthesizing long-term sea level rise projections â the MAGICC sea level model v2.0
Sea level rise (SLR) is one of the major impacts of global warming; it will threaten coastal populations, infrastructure, and ecosystems around the globe in coming centuries. Well-constrained sea level projections are needed to estimate future losses from SLR and benefits of climate protection and adaptation. Process-based models that are designed to resolve the underlying physics of individual sea level drivers form the basis for state-of-the-art sea level projections. However, associated computational costs allow for only a small number of simulations based on selected scenarios that often vary for different sea level components. This approach does not sufficiently support sea level impact science and climate policy analysis, which require a sea level projection methodology that is flexible with regard to the climate scenario yet comprehensive and bound by the physical constraints provided by process-based models. To fill this gap, we present a sea level model that emulates global-mean long-term process-based model projections for all major sea level components. Thermal expansion estimates are calculated with the hemispheric upwelling-diffusion ocean component of the simple carbon-cycle climate model MAGICC, which has been updated and calibrated against CMIP5 ocean temperature profiles and thermal expansion data. Global glacier contributions are estimated based on a parameterization constrained by transient and equilibrium process-based projections. Sea level contribution estimates for Greenland and Antarctic ice sheets are derived from surface mass balance and solid ice discharge parameterizations reproducing current output from ice-sheet models. The land water storage component replicates recent hydrological modeling results. For 2100, we project 0.35 to 0.56m (66% range) total SLR based on the RCP2.6 scenario, 0.45 to 0.67m for RCP4.5, 0.46 to 0.71m for RCP6.0, and 0.65 to 0.97m for RCP8.5. These projections lie within the range of the latest IPCC SLR estimates. SLR projections for 2300 yield median responses of 1.02m for RCP2.6, 1.76m for RCP4.5, 2.38m for RCP6.0, and 4.73m for RCP8.5. The MAGICC sea level model provides a flexible and efficient platform for the analysis of major scenario, model, and climate uncertainties underlying long-term SLR projections. It can be used as a tool to directly investigate the SLR implications of different mitigation pathways and may also serve as input for regional SLR assessments via component-wise sea level pattern scaling
Recommended from our members
Inconsistencies when applying novel metrics for emissions accounting to the Paris agreement
Addressing emissions of non-CO2 greenhouse gases (GHGs) is an integral part of efficient climate change mitigation and therefore an essential part of climate policy. Metrics are used to aggregate and compare emissions of short- and long-lived GHGs and need to account for the difference in both magnitude and persistence of their climatic effects. Different metrics describe different approaches and perspectives, and hence yield different numerical estimates for aggregated GHG emissions. When interpreting GHG emission reduction targets, being mindful of the underlying metrical choices thus proves to be essential. Here we present the impact a recently proposed GHG metric related to the concept of CO2 forcing-equivalent emissions (called GWP*) would have on the internal consistency and environmental integrity of the Paris Agreement. We show that interpreting the Paris Agreement goals in a metric like GWP* that is significantly different from the standard metric used in the IPCC Fifth Assessment Report can lead to profound inconsistencies in the mitigation architecture of the Agreement. It could even undermine the integrity of the Agreement's mitigation target altogether by failing to deliver net-zero CO2 emissions and therewith failing to ensure warming is halted. Our results indicate that great care needs to be taken when applying new concepts that appear scientifically favourable to a pre-existing climate policy context
Synthesizing long-term sea level rise projections â the MAGICC sea level model v2.0
Sea level rise (SLR) is one of the major impacts of global warming; it will threaten coastal populations, infrastructure, and ecosystems around the globe in coming centuries. Well-constrained sea level projections are needed to estimate future losses from SLR and benefits of climate protection and adaptation. Process-based models that are designed to resolve the underlying physics of individual sea level drivers form the basis for state-of-the-art sea level projections. However, associated computational costs allow for only a small number of simulations based on selected scenarios that often vary for different sea level components. This approach does not sufficiently support sea level impact science and climate policy analysis, which require a sea level projection methodology that is flexible with regard to the climate scenario yet comprehensive and bound by the physical constraints provided by process-based models. To fill this gap, we present a sea level model that emulates global-mean long-term process-based model projections for all major sea level components. Thermal expansion estimates are calculated with the hemispheric upwelling-diffusion ocean component of the simple carbon-cycle climate model MAGICC, which has been updated and calibrated against CMIP5 ocean temperature profiles and thermal expansion data. Global glacier contributions are estimated based on a parameterization constrained by transient and equilibrium process-based projections. Sea level contribution estimates for Greenland and Antarctic ice sheets are derived from surface mass balance and solid ice discharge parameterizations reproducing current output from ice-sheet models. The land water storage component replicates recent hydrological modeling results. For 2100, we project 0.35 to 0.56m (66% range) total SLR based on the RCP2.6 scenario, 0.45 to 0.67m for RCP4.5, 0.46 to 0.71m for RCP6.0, and 0.65 to 0.97m for RCP8.5. These projections lie within the range of the latest IPCC SLR estimates. SLR projections for 2300 yield median responses of 1.02m for RCP2.6, 1.76m for RCP4.5, 2.38m for RCP6.0, and 4.73m for RCP8.5. The MAGICC sea level model provides a flexible and efficient platform for the analysis of major scenario, model, and climate uncertainties underlying long-term SLR projections. It can be used as a tool to directly investigate the SLR implications of different mitigation pathways and may also serve as input for regional SLR assessments via component-wise sea level pattern scaling
Recommended from our members
Responsibility of major emitters for country-level warming and extreme hot years
The contributions of single greenhouse gas emitters to country-level climate change are generally not disentangled, despite their relevance for climate policy and litigation. Here, we quantify the contributions of the five largest emitters (China, US, EU-27, India, and Russia) to projected 2030 country-level warming and extreme hot years with respect to pre-industrial climate using an innovative suite of Earth System Model emulators. We find that under current pledges, their cumulated 1991â2030 emissions are expected to result in extreme hot years every second year by 2030 in twice as many countries (92%) as without their influence (46%). If all world nations shared the same fossil CO2 per capita emissions as projected for the US from 2016â2030, global warming in 2030 would be 0.4â°C higher than under actual current pledges, and 75% of all countries would exceed 2â°C of regional warming instead of 11%. Our results highlight the responsibility of individual emitters in driving regional climate change and provide additional angles for the climate policy discourse
Recommended from our members
The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500
Anthropogenic increases in atmospheric greenhouse gas concentrations are the main driver of current and future climate change. The integrated assessment community has quantified anthropogenic emissions for the shared socio-economic pathway (SSP) scenarios, each of which represents a different future socio-economic projection and political environment. Here, we provide the greenhouse gas concentrations for these SSP scenarios â using the reduced-complexity climateâcarbon-cycle model MAGICC7.0. We extend historical, observationally based concentration data with SSP concentration projections from 2015 to 2500 for 43 greenhouse gases with monthly and latitudinal resolution. CO2 concentrations by 2100 range from 393 to 1135âppm for the lowest (SSP1-1.9) and highest (SSP5-8.5) emission scenarios, respectively. We also provide the concentration extensions beyond 2100 based on assumptions regarding the trajectories of fossil fuels and land use change emissions, net negative emissions, and the fraction of non-CO2 emissions. By 2150, CO2 concentrations in the lowest emission scenario are approximately 350âppm and approximately plateau at that level until 2500, whereas the highest fossil-fuel-driven scenario projects CO2 concentrations of 1737âppm and reaches concentrations beyond 2000âppm by 2250. We estimate that the share of CO2 in the total radiative forcing contribution of all considered 43 long-lived greenhouse gases increases from 66â% for the present day to roughly 68â% to 85â% by the time of maximum forcing in the 21st century. For this estimation, we updated simple radiative forcing parameterizations that reflect the Oslo Line-By-Line model results. In comparison to the representative concentration pathways (RCPs), the five main SSPs (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) are more evenly spaced and extend to lower 2100 radiative forcing and temperatures. Performing two pairs of six-member historical ensembles with CESM1.2.2, we estimate the effect on surface air temperatures of applying latitudinally and seasonally resolved GHG concentrations. We find that the ensemble differences in the MarchâAprilâMay (MAM) season provide a regional warming in higher northern latitudes of up to 0.4âK over the historical period, latitudinally averaged of about 0.1âK, which we estimate to be comparable to the upper bound (âŒ5â% level) of natural variability. In comparison to the comparatively straight line of the last 2000 years, the greenhouse gas concentrations since the onset of the industrial period and this studies' projections over the next 100 to 500 years unequivocally depict a âhockey-stickâ upwards shape. The SSP concentration time series derived in this study provide a harmonized set of input assumptions for long-term climate science analysis; they also provide an indication of the wide set of futures that societal developments and policy implementations can lead to â ranging from multiple degrees of future warming on the one side to approximately 1.5ââC warming on the other
Indicate separate contributions of long-lived and short-lived greenhouse gases in emission targets
European Union funding: 821205, 821003, 820829.
Wellcome Trust: 205212/Z/16/
The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500
Anthropogenic increases in atmospheric greenhouse gas concentrations are the main driver of current and future climate change. The integrated assessment community has quantified anthropogenic emissions for the shared socio-economic pathway (SSP) scenarios, each of which represents a different future socio-economic projection and political environment. Here, we provide the greenhouse gas concentrations for these SSP scenarios â using the reduced-complexity climateâcarbon-cycle model MAGICC7.0. We extend historical, observationally based concentration data with SSP concentration projections from 2015 to 2500 for 43 greenhouse gases with monthly and latitudinal resolution. CO2 concentrations by 2100 range from 393 to 1135âppm for the lowest (SSP1-1.9) and highest (SSP5-8.5) emission scenarios, respectively. We also provide the concentration extensions beyond 2100 based on assumptions regarding the trajectories of fossil fuels and land use change emissions, net negative emissions, and the fraction of non-CO2 emissions. By 2150, CO2 concentrations in the lowest emission scenario are approximately 350âppm and approximately plateau at that level until 2500, whereas the highest fossil-fuel-driven scenario projects CO2 concentrations of 1737âppm and reaches concentrations beyond 2000âppm by 2250. We estimate that the share of CO2 in the total radiative forcing contribution of all considered 43 long-lived greenhouse gases increases from 66â% for the present day to roughly 68â% to 85â% by the time of maximum forcing in the 21st century. For this estimation, we updated simple radiative forcing parameterizations that reflect the Oslo Line-By-Line model results. In comparison to the representative concentration pathways (RCPs), the five main SSPs (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) are more evenly spaced and extend to lower 2100 radiative forcing and temperatures. Performing two pairs of six-member historical ensembles with CESM1.2.2, we estimate the effect on surface air temperatures of applying latitudinally and seasonally resolved GHG concentrations. We find that the ensemble differences in the MarchâAprilâMay (MAM) season provide a regional warming in higher northern latitudes of up to 0.4âK over the historical period, latitudinally averaged of about 0.1âK, which we estimate to be comparable to the upper bound (âŒ5â% level) of natural variability. In comparison to the comparatively straight line of the last 2000 years, the greenhouse gas concentrations since the onset of the industrial period and this studies' projections over the next 100 to 500 years unequivocally depict a âhockey-stickâ upwards shape. The SSP concentration time series derived in this study provide a harmonized set of input assumptions for long-term climate science analysis; they also provide an indication of the wide set of futures that societal developments and policy implementations can lead to â ranging from multiple degrees of future warming on the one side to approximately 1.5ââC warming on the other