128 research outputs found

    A Simple Biomimetic Receptor Selectively Recognizing the GlcNAc2 Disaccharide in Water

    Get PDF
    AbstractGlcNAc2 is the core disaccharide fragment present in N‐glycans exposed on the surface of enveloped viruses of high health concern, such as coronaviruses. Because N‐glycans are directly involved in the docking of viruses to host cells, recognition of GlcNAc2 by a biomimetic receptor may be a convenient alternative to the use of lectins to interfere with viral entry and infection. Herein, we describe a simple biomimetic receptor recognizing the methyl‐ÎČ‐glycoside of GlcNAc2 in water with an unprecedented affinity of 160 ΌM, exceeding that of more structurally complex receptors reported in the literature. The tweezers‐shaped acyclic structure exhibits marked selectivity among structurally related disaccharides, and complete discrimination between mono‐ and disaccharides. Molecular modelling calculations supported by NOE data provided a three‐dimensional description of the binding mode, shedding light on the origin of the affinities and selectivities exhibited by the receptor

    Can jets make the radioactively powered emission from neutron star mergers bluer?

    Get PDF
    Neutron star mergers eject neutron-rich matter in which heavy elements are synthesized. The decay of these freshly synthesized elements powers electromagnetic transients ('macronovae' or 'kilonovae') whose luminosity and colour strongly depend on their nuclear composition. If the ejecta are very neutron-rich (electron fraction Ye < 0.25), they contain fair amounts of lanthanides and actinides that have large opacities and therefore efficiently trap the radiation inside the ejecta so that the emission peaks in the red part of the spectrum. Even small amounts of this high-opacity material can obscure emission from lower lying material and therefore act as a 'lanthanide curtain'. Here, we investigate how a relativistic jet that punches through the ejecta can potentially push away a significant fraction of the high opacity material before the macronova begins to shine. We use the results of detailed neutrino-driven wind studies as initial conditions and explore with 3D special relativistic hydrodynamic simulations how jets are propagating through these winds. Subsequently, we perform Monte Carlo radiative transfer calculations to explore the resulting macronova emission. We find that the hole punched by the jet makes the macronova brighter and bluer for on-axis observers during the first few days of emission, and that more powerful jets have larger impacts on the macronova

    Geospatial information infrastructures

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Geospatial information infrastructures (GIIs) provide the technological, semantic,organizationalandlegalstructurethatallowforthediscovery,sharing,and use of geospatial information (GI). In this chapter, we introduce the overall concept and surrounding notions such as geographic information systems (GIS) and spatial datainfrastructures(SDI).WeoutlinethehistoryofGIIsintermsoftheorganizational andtechnologicaldevelopmentsaswellasthecurrentstate-of-art,andreïŹ‚ectonsome of the central challenges and possible future trajectories. We focus on the tension betweenincreasedneedsforstandardizationandtheever-acceleratingtechnological changes. We conclude that GIIs evolved as a strong underpinning contribution to implementation of the Digital Earth vision. In the future, these infrastructures are challengedtobecomeïŹ‚exibleandrobustenoughtoabsorbandembracetechnological transformationsandtheaccompanyingsocietalandorganizationalimplications.With this contribution, we present the reader a comprehensive overview of the ïŹeld and a solid basis for reïŹ‚ections about future developments

    Antigenic GM3 Lactone Mimetic Molecule Integrated Mannosylated Glycopeptide Nanofibers for the Activation and Maturation of Dendritic Cells

    Get PDF
    The ability of dendritic cells to coordinate innate and adaptive immune responses makes them essential targets for vaccination strategies. Presentation of specific antigens by dendritic cells is required for the activation of the immune system against many pathogens and tumors, and nanoscale materials can be functionalized for active targeting of dendritic cells. In this work, we integrated an immunogenic, carbohydrate melanoma-associated antigen-mimetic GM3-lactone molecule into mannosylated peptide amphiphile nanofibers to target dendritic cells through DC-SIGN receptor. Based on morphological and functional analyses, when dendritic cells were treated with peptide nanofiber carriers, they showed significant increase in antigen internalization and a corresponding increase in the surface expression of the activation and maturation markers CD86, CD83 and HLA-DR, in addition to exhibiting a general morphology consistent with dendritic cell maturation. These results indicate that mannosylated peptide amphiphile nanofiber carriers are promising candidates to target dendritic cells for antigen delivery. © 2017 American Chemical Society

    Expert Consensus Recommendations for the Suspicion and Diagnosis of Transthyretin Cardiac Amyloidosis

    Get PDF
    Cardiomyopathy is a manifestation of transthyretin amyloidosis (ATTR), which is an underrecognized systemic disease whereby the transthyretin protein misfolds to form fibrils that deposit in various tissues and organs. ATTR amyloidosis is debilitating and associated with poor life expectancy, especially in those with cardiac dysfunction, but a variety of treatment options have recently become available. Considered a rare disease, ATTR amyloidosis may be more prevalent than thought, particularly in older persons. Diagnosis is often delayed because of a lack of disease awareness and the heterogeneity of symptoms at presentation. Given the recent availability of effective treatments, early recognition and diagnosis are especially critical because treatment is likely more effective earlier in the disease course. The Amyloidosis Research Consortium recently convened a group of experts in ATTR amyloidosis who, through an iterative process, agreed on best practices for suspicion, diagnosis, and characterization of disease. This review describes these consensus recommendations for ATTR associated with cardiomyopathy as a resource to aid cardiologists and others in the recognition and diagnosis of ATTR associated with cardiomyopathy. Included in this review is an overview of red flag signs and symptoms and a recommended diagnostic approach, including testing for monoclonal protein, scintigraphy, or biopsy and, if ATTR associated with cardiomyopathy is identified, TTR genotyping

    Inhomogeneous Jets from Neutron Star Mergers: One Jet to Rule Them All

    Get PDF
    Using the resultant profiles from 3D hydrodynamic simulations of relativistic jets interacting with neutron star merger wind ejecta, we show how the inhomogeneity of energy and velocity across the jet surface profile can alter the observed afterglow lightcurve. We find that the peak afterglow flux depends sensitively on the observer’s line-of-sight, not only via the jet inclination but also through the jet rotation: for an observer viewing the afterglow within the GRB-bright jet core, we find a peak flux variability on the order < (Formula presented.) dex through rotational orientation and < (Formula presented.) dex for the polar inclination. An observed afterglow’s peak flux can be used to infer the jet kinetic energy, and where a top-hat jet is assumed, we find the range of inferred jet kinetic energies for our various model afterglow lightcurves (with fixed model parameters), covers ∌1/3 of the observed short GRB population. Additionally, we present an analytic jet structure function that includes physically motivated parameter uncertainties due to variability through the rotation of the source. An approximation for the change in collimation due to the merger ejecta mass is included and we show that by considering the observed range of merger ejecta masses from short GRB kilonova candidates, a population of merger jets with a fixed intrinsic jet energy is capable of explaining the observed broad diversity seen in short GRB afterglows

    A Structurally Simple Vaccine Candidate Reduces Progression and Dissemination of Triple-Negative Breast Cancer

    Get PDF
    The Tn antigen is a well-known tumor-associated carbohydrate determinant, often incorporated in glycopeptides to develop cancer vaccines. Herein, four copies of a conformationally constrained mimetic of the antigen TnThr (GalNAc-Thr) were conjugated to the adjuvant CRM197, a protein licensed for human use. The resulting vaccine candidate, mime[4]CRM elicited a robust immune response in a triple-negative breast cancer mouse model, correlated with high frequency of CD4+ T cells and low frequency of M2-type macrophages, which reduces tumor progression and lung metastasis growth. Mime[4]CRM-mediated activation of human dendritic cells is reported, and the proliferation of mime[4]CRM-specific T cells, in cancer tissue and peripheral blood of patients with breast cancer, is demonstrated. The locked conformation of the TnThr mimetic and a proper presentation on the surface of CRM197 may explain the binding of the conjugate to the anti-Tn antibody Tn218 and its efficacy to fight cancer cells in mice

    ATTR amyloidosis during the COVID-19 pandemic: insights from a global medical roundtable

    Get PDF
    BACKGROUND: The global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causing the ongoing coronavirus disease 2019 (COVID-19) pandemic has raised serious concern for patients with chronic disease. A correlation has been identified between the severity of COVID-19 and a patient's preexisting comorbidities. Although COVID-19 primarily involves the respiratory system, dysfunction in multiple organ systems is common, particularly in the cardiovascular, gastrointestinal, immune, renal, and nervous systems. Patients with amyloid transthyretin (ATTR) amyloidosis represent a population particularly vulnerable to COVID-19 morbidity due to the multisystem nature of ATTR amyloidosis. MAIN BODY: ATTR amyloidosis is a clinically heterogeneous progressive disease, resulting from the accumulation of amyloid fibrils in various organs and tissues. Amyloid deposition causes multisystem clinical manifestations, including cardiomyopathy and polyneuropathy, along with gastrointestinal symptoms and renal dysfunction. Given the potential for exacerbation of organ dysfunction, physicians note possible unique challenges in the management of patients with ATTR amyloidosis who develop multiorgan complications from COVID-19. While the interplay between COVID-19 and ATTR amyloidosis is still being evaluated, physicians should consider that the heightened susceptibility of patients with ATTR amyloidosis to multiorgan complications might increase their risk for poor outcomes with COVID-19. CONCLUSION: Patients with ATTR amyloidosis are suspected to have a higher risk of morbidity and mortality due to age and underlying ATTR amyloidosis-related organ dysfunction. While further research is needed to characterize this risk and management implications, ATTR amyloidosis patients might require specialized management if they develop COVID-19. The risks of delaying diagnosis or interrupting treatment for patients with ATTR amyloidosis should be balanced with the risk of exposure in the health care setting. Both physicians and patients must adapt to a new construct for care during and possibly after the pandemic to ensure optimal health for patients with ATTR amyloidosis, minimizing treatment interruptions

    Synthesis of macrocyclic receptors with intrinsic fluorescence featuring quinizarin moieties

    Get PDF
    An unprecedented class of macrocycles with intrinsic fluorescence consisting of phenolic trimers and quinizarin is developed. Though they are lacking strong hydrogen bonds as observed in calixarenes, the two examples introduced here each adopt a vase-like conformation with all four aromatic units pointing in one direction (syn orientation). This “cone” conformation has been confirmed by NMR spectroscopy, molecular modeling, and X-ray crystallography. The laminar, electron-rich fluorophore as part of the macrocycle allows additional contacts to enclosed guest molecules
    • 

    corecore