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Abstract: 

              

 

An unprecedented class of macrocycles with intrinsic fluorescence consisting of phenolic trimers and 

quinizarin is developed. Though they are lacking of strong hydrogen bonds as observed in 

calixarenes, the two examples introduced here adopt each a vase-like conformation with all four 

aromatic units pointing in one direction (syn orientation). This ‘cone’ conformation had been 

confirmed by NMR spectroscopy, molecular modelling and X-ray crystallography. The laminar, 

electron-rich fluorophore as part of the macrocycle allows additional contacts to enclosed guest 

molecules.  
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INTRODUCTION 

 

Due to their high sensitivity, selectivity and response time, fluorescence-based analytical techniques 

are extensively used in different fields of science. Respective sensors have been employed to detect a 

wide range of chemical and biochemical species as for example cations, anions, neutral molecules, 

biochemical analytes and gases.
1
 Thereby, the quality of the complexation equilibrium is indicated by 

a change in the intensity of the emitted light.
2
 In many cases, the used sensor-active materials consist 

of a macrocycle connected to a pendant fluorophore. Much less studied are examples, where the 

fluorophore is part of the recognition unit. The respective literature employs very often condensed 

aromatic compounds like naphthalene
3
, anthracene

4
, pyrene

5
, fluorene

6
 or related fluorophores

7
.  

     During our research on artificial hosts for methyl ammonium ions, we focused on cyclophanes as 

the macrocyclic recognition unit. They are a well-known class of supramolecular receptors, with the 

name being derived from their general constitution as “cyclic phenyl alkanes”.
8
 Especially [1n]meta-

cyclophanes, so-called calixarenes, have attracted considerable attention over the last decades and are 

one of the best investigated cyclophane sub-family
9
 as they have a rather stable cavity and 

advantageous host/guest properties.
10

 Moreover, they are easily prepared and allow a wide range of 

derivatization reactions, which make them ideal candidates for the preparation of sensor-active 

compounds. In most cases, fluorophores were introduced at the upper or lower rim or in lateral 

positions,
11

 hence bearing the responsive unit more or less in the periphery of the molecule. A rather 

less developed approach is the replacement of the phenolic units of a calixarene against fluorogenic 

moieties, which so far had only been shown for a complete exchange in the case of the 

calixnaphthalenes.
12

 To the best of our knowledge, the replacement of only one of the phenolic units 

of a calixarene has not been endeavored yet, though the combination of conformational flexibility on 

the one hand and rigidity on the other seems a rather auspicious concept (Scheme 1). By inserting a 
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condensed aromatic system, the resulting receptor is envisaged to enable better C-H··· and 

cation···interactions with a methyl ammonium ion guest and at the same time allow an efficient 

quantification of host/guest interactions.  

 

Scheme 1. The exchange of a phenolic unit of a calix[4]arene against a fluorophore leads to a receptor with 

intrinsic fluorescence. 

 

 

As a proof of concept to our approach, we advanced the synthesis of two rather simple 

representatives (1 and 2), featuring tert-butyl group at the upper and methoxy units at the lower rim. 

As a fluorophore we chose quinizarin (1,4-dihydroxyanthraquinone)
13,14

 delivering a receptor with a 

well-balanced combination of soft -electrons and hard H-bond acceptors (C=O, OR), which is 

joined with putative functionalized phenolic trimers via ether bridges (Scheme 2).   
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Scheme 2. (a) Synthesis of monodemethylated trimer 5. (b) Syntheses of macrocycles 1 (58 %) and 2 (18 %). 
a
   

 

 

a) 

 

 

b) 

a 
Reaction conditions: (i) 1. NaH, THF/DMF, 2. MeI; (ii) (CH2O)n, ZnBr2, HBr/AcOH; (iii) K2CO3, acetone.  

 

RESULTS AND DISCUSSION 

Syntheses of fluorescophanes 1 and 2. The key step during the synthesis of the two title compounds 

is the formation of ether bridges between quinizarin and bisbromomethylated trimers (5 or 6, 

respectively). As the preparation of 6
15

 has been achieved by a Blanc-analogue reaction on 3
16

 as 

described for a related compound,
17

 we want to focus here on the synthesis of 5. For similar partially 
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methylated oligomers two different procedures have been applied so far: partial methylation of 

phenolic trimers with dimethylsulfate
18

 on the one hand and isoaromatization of cyclohexanone 

derivatives
19

 on the other. We perceived another route via selective demethylation of a permethylated 

trimer as starting material. For that purpose, phenolic trimer 3 has been fully methylated in the first 

step to yield trimethoxy derivative 4, which was subsequently treated with paraformaldehyde, zinc 

bromide and hydrogen bromide in acetic acid (Scheme 2). In the first step of the reaction, two CH2Br 

groups are introduced into the molecule, similar to a Blanc reaction. For the originating compound, 

we assume an interaction of the CH2Br bromine atoms with the methoxy groups located at the same 

aromatic unit, withdrawing electron density from the respective ether oxygen atom. Suggested by 

molecular modelling, C-H···Br-contacts are about 2.92 and 2.96 Å, respectively, which is shorter 

than the sum of the van der Waals radii of hydrogen and bromine (3.05 Å). Hence, the electrophilic 

attack of a proton, viz. the first reaction step of an ether scission, will preferably occur at the central 

anisole moiety (Scheme 3).  

 

Scheme 3. a) Selective ether scission induced by C-H···Br-contacts of the double bisbromomethylated intermediate in the 

synthesis of 5. b) The energy-minimized structure delivers C-H···Br-distances of 2.92 and 2.96 Å, respectively. (Only 

one of the bromomethylated anisole units is shown in detail.)  

            

                                        a)                     b)    
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     With all particular trimeric fragments in hand, the synthesis of macrocycles 1 and 2 was 

implemented. Potassium carbonate has been applied as a base to deprotonate the two phenolic 

hydroxyl group of quinizarin and facilitates a nucleophilic substitution analogously to a Williamson 

ether synthesis. As trimer 5 contains phenolic protons like quinizarin, we examined the calculated 

pKa values: 7.5 for quinizarin and 10.3 for a monophenolic trimer
20

 similar to 5. Thus, quinizarin is 

expected to be deprotonated over hundred times faster than trimer 5. In order to yield the smallest 

possible cycle during reaction, we used a high dilution apparatus
21

 applying the principle of Ziegler 

and Ruggli.
22

 With this concept, title compounds 1 and 2 were synthesized in moderate to good 

yields (58 % and 18 %, respectively). The somewhat lower yields in the cyclization step of 2 may be 

attributed to the phenolic hydrogen at the middle aromatic unit of trimer 5: it is feasible to assume 

that it is also abstracted to a certain extent during the reaction delivering side products. 

 

Conformational studies. The given similarity of the target compounds with calixarenes suggests an 

analogue conformational behavior. As described for permethylated calix[4]arenes,
23

 we expected 

rather complicated 
1
H and 

13
C NMR spectra for 1 and 2. Surprisingly, both compounds delivered 

very clear NMR data (Figs. S4-S7, ESI). In the 
13

C NMR spectra the signals for Ar-CH2-Ar where 

found at 31.5 (1) and 30.3 ppm (2) suggesting a syn orientation for the three aromatic units 

involved.
24

 Together with the 
1
H-NMR data for the aromatic protons this points on the face of it at a 

stable, highly symmetric conformation (cone) at room temperature. In both macrocycles two 

constitutional different methylene bridges can be identified: Ar-CH2O-Ar and Ar-CH2-Ar, producing 

different chemical shifts. The OCH2 group in 1 gives a broad singlet at 5.37 ppm; in 2 we found a 

broad doublet at 5.42 ppm. Whereas 2 delivers two broad singlets for the Ar-CH2-Ar protons at 3.43 

and 4.30 ppm, the analogue signals in 1 are extremely broadened due to coalescence, underlying the 

signals of the OMe- groups. These findings question stable conformations at room temperature, as 
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this may be explained from conformational conversions in 1 and 2. These do not affect the chemical 

and magnetic environments of the aromatic nuclei, however, significantly those for the methylene 

bridges.   

 
a) 
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b) 

 

 

c) 

 

Figure 1.  Details of the 
1
H NMR spectra of 1 (a) 

and 2 (b, c) at different temperatures in CDCl3. 
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     The broad signals for the bridging methylene groups stimulated 1D and 2D NMR studies at lower 

temperatures, with typical spectra displayed in Figure 1. Both title molecules are rather flexible 

indicating a lower coalescence temperature than observed for the tert-butylcalix[4]arene (52 °C
25

 in 

CDCl3). As the temperature had been lowered, the broad singlets of Ar-CH2O-Ar split into a pair of 

doublets with 
2
J coupling constants of 15 Hz for 1 and 2. Lacking of strong hydrogen acceptors, 1 

shows a higher flexibility than 2 as also proven by the behavior of the Ar-CH2-Ar units: even at -40 

°C the conformational conversion in compound 1 does not allow the complete resolution of the 

couplings between the axial (endo) and equatorial (exo) protons (
2
J = 15 Hz, each). Interestingly, in 2 

the aromatic protons H3 (H19) and H5 (H17) of ring A (C), H37 (H38) at quinizarin ring D and the 

hydroxyl proton are submitted to a considerable downfield shift during cooling. We attribute this to a 

decreasing thermal dynamic mobility of the pending hydroxyl and methoxy groups. It is feasible to 

assume that at the same time hydrogen bonding of H37 (H38) and the hydroxyl proton with the two 

oxygen atoms of the methoxy groups is strengthened. Hence, the aromatic protons H3 (H19) and H5 

(H17) of ring A (C) are turning slightly away from the shielding cyclophane cavity. For the aromatic 

region of cycle 1 we only found insignificant shifts during cooling for H5 (H17), H10 (H12) and H37 

(H38), though not for H3 (H19). Noteworthy, all aromatic signals exhibit broadening as the 

temperature was lowered, suggesting dynamic conformational exchange (Fig. S8, ESI).  

 

     As the pending methoxy groups are not directly involved in the coalescence, we anticipated sharp 

1
H NMR signals for OCH3 at room temperature, which proved to be true for cycle 2. A respective 

singlet at 3.91 ppm for the OCH3 groups indicates a more or less rigid cavity, supposively fixed by 

strong O-H···O hydrogen bonds between the hydroxyl and the methoxy moieties. In 1 only the 

central methoxy group delivered sharp singlet (3.67 ppm). However, the methyl groups of the two 

outer anisole units in 1 gave a rather broad singlet at 3.72 ppm. Obviously, the methoxy group at ring 
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B is much more flexible at room temperature than the ones at ring A and C. The OCH3 signal on the 

B ring was broadened and upfield-shifted (3.67 ppm  3.18 ppm) with the temperature lowering; 

this is typical for methoxy groups pointing into a cyclophane cavity.
26

 As the conformation of the 

macrocyclic backbone is getting more stable while cooling to -40 °C, the free rotation of methoxy 

group B is obstructed and slowed down to the NMR time scale. Owing to the obstructed rotation of 

the methoxy group(s), a rather low resolution of the two doublets of Ar-CH2-Ar and the broadened 

OCH3 singlet(s) even at -45 °C is observed.  

 

     In principle, the anthraquinone units in the target molecules can adopt two positions: opposite the 

anisole moieties or away from them. To solve this issue, we performed 2D NOESY spectra of 1 and 

2 at room temperature and -40 °C (for 2), elucidating the proximity of the different aromatic units of 

the molecule (Fig. 2 and Fig. S9-S10, ESI). For both macrocycles, we found NOEs between the 

aromatic protons H5/H10 and H12/H17 (1: 6.81/7.25 ppm; 2: 6.89/7.19 ppm) indicating that all three 

aromatic moieties are in a syn conformation even at room temperature. This is also confirmed by 

interactions between the tert-butyl groups of rings A and C with the one of ring B (0.86/1.38 ppm for 

1 and 0.88/1.34 ppm for 2). The arrangement of the anthraquinone unit has been determined from 

interactions of quinizarin ring D (H37) with other regions of the molecule. For 1, we observed NOEs 

between H37 and OCH2 (6.78/5.37) as well as H37 to the methoxy group of ring B (6.78/3.63), 

which is only possible when all four aromatic units are in a syn arrangement, i.e. the macrocycle is in 

a cone conformation. The same conformation can be assumed in 2, as its OH group is involved in 

dipolar interactions with H37/38 of ring D (6.62/7.13 ppm). At -40 °C we were able to identify 

additional NOEs between H5 (H17) / H10 (H12) and the axial proton of the adjacent methylene 

bridges.  
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a) 

 

b) 

 

Figure 2. Observed NOEs, indicated by dotted lines, for title compounds 1 (a) and 2 (b) in CDCl3 at 20 °C. No NOE 

contacts indicating other conformations than a cone were observed for either cyclophane. 

Molecular modeling studies. For supplementing the spectroscopy studies on the conformational 

properties of both macrocycles we performed molecular modeling studies. With exception of a strong 

hydrogen bond between the phenolic OH and a neighbouring methoxy moiety in 2, no strong 

hydrogen bonds have been found. However, the quinizarin units in both target molecules are engaged 

into invers-bifurcated C-H···O-contacts (Fig. 3), stabilizing the cone conformation of both cycles 

(Fig. S1, ESI). 
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Figure 3.  Common H-bonding motif in 1 and 2 found by 

molecular modeling studies. 1: a = 2.721 Å, 2.692 Å; b = 

2.729 Å, 2.752 Å; 2: a = 2.543 Å, 2.638 Å; b = 2.583 Å, 

2.630 Å.  

 

Single X-ray studies. In order to verify the results from the spectroscopic and the modeling studies, 

we investigated the molecular structure of the title compounds by X-ray crystallography. When 

crystallized from acetonitrile/chloroform and acetonitrile, resp., compounds 1 and 2 gave the 

inclusion compounds 1a [1 · acetonitrile · chloroform (2:2:1)] and 2a [2 · acetonitrile (3:1)] (Table 

S1, ESI). Perspective views of the asymmetric units and the crystal packings are displayed in Figures 

4-7. For the description of the molecular conformations of the host compounds we determined the 

inclination of the aromatic rings with respect to the mean plane of the four methylene groups of the 

molecules. Complementary, the dihedral angles between pairs of opposite arene rings have been 

designated. These parameters together with structural details on the quinizarin units are summarized 

in Table 1; specifics on hydrogen bonds and other contacts are listed in Table S2 (ESI).   
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Table 1. Selected conformational parameters of compounds 

1a and 2a    

 

compound 1a(1) 1a(2) 2a 

    

interplanar angles (°)
a

    

    

mpla A/mpla C 41.9 35.9 33.4 

mpla B/mpla Q
b
 79.2 68.5 76.4 

mpla M
c
/mpla A 73.1 78.1 79.5 

mpla M/mpla B 41.8 36.5 51.4 

mpla M/mpla C 72.8 74.0 72.4 

mpla M/mpla Q 37.7 32.1 52.3 

    

mpla D/mpla F  11.0 11.0 8.6 

    

ACN/mpla M 45.0 40.1 46.8 

    
a Aromatic rings: ring A: C1…C6; ring B: C8…C13; ring C: 

C15…C20; ring D: C36…C49; ring F: C42…C47. b Best plane 

through atoms of the quinizarin unit: C36…C49. c Best plane through 

the carbon atoms of the methylene bridges C7, C14, C35, C50. 

    

       

     Crystallization of trimethoxy receptor 1 from acetonitrile/chloroform (1:1) gives inclusion 

compound 1a in the monoclinic space group C2/c. The asymmetric unit consists of two 

crystallographically independent host molecules, two acetonitrile (ACN) molecules and one molecule 

of chloroform. The CH3CN guests are incorporated within the host cavities, the chloroform is 

situated clathrate-like in lattice voids. (In total, the structure contains a solvent accessible void of ca 

40 Å³). In both independent hosts of 1a, viz. molecule 1 and molecule 1’, the four aromatic units of 

the macrocycle point in the same direction with corresponding interplanary angles A/C and 

B/quinizarin of 41.9 ° (35.9 °) and 79.2 ° (68.5 °), respectively (Fig. 4a, Table 1). For the centroid-to-

centroid distance between the facing arenes we found 6.83 Å (6.75 Å) and 7.00 Å (7.18 Å), which is 

considerably larger than for pinched cone calixarenes.
27

 By way of interest, the bulky quinizarin 

moiety points towards the cavity. This conformation seems to be stabilized by intramolecular C-

H···O-contacts [d(O···H) = 2.32 - 2.64 Å] between two aromatic protons of the quinizarin (H37, 
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H38; H87, H88) and the oxygen atoms of two outer methoxy groups (O1, O3; O8, O10). In Figure 4b 

the trapezoidal form of the cavity gets obvious, being a result of the ring extension by two oxygen 

atoms compared to a calix[4]arene. The anthraquinone moieties are both bended by 11 °; a 

phenomenon which is also observed in the structures of quinizarin
28

 (1.5 °), dimethoxyquinizarin
29

 

(22.0 °) and quinizarin diacetate
30

 (8.1 °). As it is typical for tert-butyl groups, one in each 

independent host molecule is disordered (SOF = 94.4 and 5.6 %). 

 

a) 

 

 

b) 

 

Figure 4. a) Molecular structure of macrocycle 1 in the 2:2:1 inclusion with acetonitrile and chloroform (1a). Only host 

molecule 1 is displayed; all guest molecules and hydrogen atoms have been omitted for clarity. The disorder of the two 
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tert-butyl groups concerned is not displayed. b) Asymmetric unit of 1a shown with 50 % displacement probability. Only 

hydrogen atoms involved in intra- and intermolecular contacts are presented.  

 

     The acetonitrile molecules within the cavities of molecules 1 and 1’ are tilted by 40.0 ° and 45.1 °, 

respectively, against the mean plane of the methylene bridges; they are more or less collinear with the 

aromatic rings B and B’. The ACN methyl groups point into the cavity; each of these endo CH3CN 

guests is fixed by one C-H···-contact to the aromatic unit A (A’) [d(centroid···H) = 2.88 and 2.29 

Å, resp.] and one C-H···O-contact to the methoxy oxygen of ring B (B’) [d(O···H) = 2.56 and 2.57 

Å, resp.]. In contrast, the slightly acidic H atom of the exo guest chloroform is engaged in a three-

centered hydrogen bond.
31

 Additionally, we found a Cl···-contact
32

 to the ring B’ in molecule 1’ 

[d(centroid···Cl) = 3.505(2) Å].  

     The two independent molecules 1 and 1’ are connected via their anthraquinone units developing a 

handshake-like motif. The distance of rings F and F’ is 3.411 Å, which suggests aromatic face-to-

face-contacts. By way of interest, also the quinone moiety is engaged into these interactions. In the 

overall packing, we found slightly displaced stacks of quinizarin residues units in direction of the 

crystallographic c axis featuring ···-stacking [d(D···D) = 3.454(2) Å] (Fig. 5). Thereby, two 

dependent molecules are additionally connected via C-H···O-contacts involving methylene and 

methoxy groups and quinizarin oxygen atoms [d(centroid···H) = 2.53 - 2.46 Å].  

 



17 

 

 

Figure 5. Packing details in the inclusion compound 1a. The 

characteristic stacking of the anthraquinone moieties is highlighted 

in grey. Disordered tert-butyl groups, guest molecules and 

hydrogen atoms are left out for clarity.  

 

     When crystallized from acetonitrile, title compound 2 was found to form a 1:3 inclusion 

compound (2a) in the monoclinic space group P21/n (Figure 6). One of the guest molecules is 

accommodated inside the cavity (endo) and the two others outside the cavity (exo) of the host 

molecule. Similar to 1a, the macrocyclic framework adopts a pinched cone conformation with 

interplanary angles of 33.4° (A/C) and 76.4° (B/quinizarin), respectively (Table 2). The cup-shape of 

the molecule is stabilized by a strong O-H···O hydrogen bond, which links the phenolic hydroxyl 
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group to one of the neighbouring methoxy atoms. Like in 1a, the sterically demanding anthraquinone 

moiety is turned towards the cavity (mpla M/mpla Q = 52.3°), and again we found stabilizing C-

H···O-contacts involving the two methoxy oxygens and quinizarine ring D [d(O···H) = 2.49 and 2.75 

Å, resp.] The enlarged cavity is able to incorporate one acetonitrile molecule which is fixed by three 

C-H···-interactions
33

 to the aromatic rings A, B and C. Noteworthy, it is tilted by an angle of 48.7° 

against the mean plane of the four carbon atoms of the methylene bridges and thereby parallel to the 

quinizarin unit. Very likely, the reasons for this is a kind of ···-stacking, involving quinizarin ring 

D and the CN triple bond in the acetonitrile [d = 3.384(2) Å]. Additionally, the latter is engaged in an 

intramolecular C-H···-contact with a tert-butyl H atom H30 (d = 2.83 Å).  

 

 

Figure 6. Molecular structure of 2a, showing 50 % probability displacement 

representation. 

 

     In the packing of 2a, two hosts are paired via their quinizarin units developing C-H···-contacts 

[d(H35A···centroid F) = 2.93 Å]. Interestingly, we also observed a close proximity between bridge 
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oxygen O4 and a neighboring quinone unit in ring E [d = 3.215(2) Å] (Figure 7). These contacts 

resemble charge-transfer-like complexes which are already known from quinones and sulfur.
34

 

Unlike molecule 1, we observe no continuous aromatic stacking. In the overall packing all three of 

the included solvent molecules take part with the exo oriented acetonitrile molecules mediating the 

connection of the host molecules. 

 

    

       a)                                                                                   b) 

Figure 7. a) Dimer formation in the packing of 2 in its 1:3 acetonitrile inclusion compound (2a). Guest molecules and 

hydrogen atoms are left out for clarity.  b) The two paired anthraquinone units in 2a resemble a charge-transfer complex. 

 

Fluorescence Studies. In order to extensively characterize the new receptors 1 and 2, we studied 

their luminescent behavior in DMSO solution in comparison to that of quinizarin (1,4-

dihydroxyanthraquinone) and 1,4-dimethoxyanthraquinone.
35

 The absorption and fluorescence 

spectra are presented in Figure 8. Absolute excitation maxima, (ex)max, absolute emission maxima, 

(em)max, and the associated Stokes shifts are summarized in Table 2. The Lambert-Beer law is valid 

in the entire concentration interval. The fluorescence spectra have been collected at the respective 

absorption maxima. 
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Table 2. Fluorescence data for 1, 2, quinizarin and 1,4-dimethoxy-

anthraquinone in DMSO (20 °C)  

 

compound 1 2 quinizarin 
1,4-dimethoxy-

anthraquinone 

     

(ex)max (nm)  423 438 481 426 

(em)max (nm)  539 548 560 540 

Stokes shift (nm) 116 110 79 114 

     

        

 

  

a) concentration: 0.007 mM; 0.01 mM; 0.02 mM; 0.05 

mM; 0.1 mM; 0.2 mM 

 

b) concentration: 0.007 mM; 0.01 mM; 0.02 mM; 

0.05 mM; 0.1 mM; 0.2 mM 

 

  

c) concentration: 0.005 mM; 0.007 mM; 0.01 mM; 

0.02 mM; 0.05 mM; 0.07 mM; 0.1 mM 

d) concentration: 0.005 mM; 0.007 mM; 0.01 mM; 

0.02 mM; 0.05 mM; 0.07 mM; 0.1 mM 
 

Figure 8. Excitation and fluorescence emission spectra of macrocycles 1 (a), 2 (b), quinizarin (c) and 1,4-

dimethoxyanthraquinone (d) at different concentrations in DMSO.  
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     Quinizarin shows a broad absorption maximum at 481 nm, which corresponds to the red colour of 

its solution. Macrocycles 1 and 2 as well as 1,4-dimethoxyanthraquinone experience a hypsochromic 

shift to 423, 438 and 426 nm, respectively, being in coherence with their yellow solutions. The color 

change is obviously a result of the altered electronic situation connected with the etherification of the 

hydroxyl groups of the quinizarin. The fluorescence maxima for 1 and 2 have been determined with 

539 and 548 nm, which is slightly lower than for quinizarin (560 nm) and similar to 1,4-

dimethoxyanthraquinone (540 nm). The resulting stokes shifts are considerable higher for the 

macrocycles and 1,4-dimethoxyanthraquinone than for quinizarin. By way of interest, the excitation 

and emission spectra of quinizarin develop a rather pronounced plateau; this may result from a higher 

aggregation of the molecules.  

 

CONCLUSION 

     Two unprecedented cyclophanes (1 and 2) with intrinsic fluorescence have been synthesized from 

putative linear trimers and quinizarin applying the principle of Ziegler and Ruggli [22]. The 

constitution of the molecules is related to the one of methylated calixarenes, though we observed a 

different conformational behavior. In general, trimethoxy cycle 1 shows a higher flexibility than the 

monophenolic cycle 2, which is stabilized by a strong hydrogen bond. For each of the title 

compounds temperature-dependent 
1
H NMR spectroscopy revealed a typical sharpening of the 

methylene resonances and a conformational stabilization with decreasing temperatures. These 

findings justify the assumption of ‘cone’ conformations with all four aromatic units pointing in one 

direction for both cycles. This hypothesis is supported by respective shifts of the methylene carbons 

in the 
13

C NMR spectra and pertinent NOEs. The cup-shape of both title molecules has also been 

confirmed by molecular modelling and X-ray crystallography. It seems opportune to assume that C-

H···O-contacts between the methoxy oxygen atoms and the quinizarin fulfill here the function of the 



22 

 

strong O-H···O-bonds found in calixarenes to stabilize the cone conformation. Morever, fast 

exchange processes in the NMR spectra of 1 and 2 suggest two rather similar cone forms for each 

cycle similar to pinched cone calixarenes. 

     As demonstrated by excitation and fluorescence emission spectra the incorporation of an 

anthraquinone unit into a cyclophane does not change its luminescent behavior. The additional plane, 

electron-rich fluorophore in 1 and 2 allows additional interactions towards potential guest molecules 

as shown for acetonitrile complexes. We found a better fit between host and guest with more 

stabilizing C-H···O- and C-H···-contacts in comparison to the somewhat smaller calix[4]arenes. 

This is especially true for cycle 2, where all three hydrogen atoms of the acetonitrile molecule are 

involved in the complexation. By regarding acetonitrile as a simple model of methyl amines, these 

findings are encouraging the further development of this promising new class of macrocycles. Our 

next step in this respect will be the introduction of hydrophilic groups to the molecules resulting in 

water soluble receptors. 

 

EXPERIMENTAL SECTION 

Materials and Methods. Melting points have been determined on a microscope heating stage and 

are uncorrected. IR spectra were measured as KBr pellets and with the ATR method. The UV/VIS 

and fluorescence measurements have been carried out using quartz cuvettes (10 x 10 mm) and 

diluting the respective stock solutions in DMSO (1: c = 1.3 mmol/l; 2: c = 1.2 mmol/l; quinizarin: c = 

1.2 mmol/l; 1,4-dimethoxyanthraquinone: c = 1.2 mmol/l) to the concentrations specified. NMR 

spectra were recorded at 500.1 (
1
H NMR) and 125.7 MHz (

13
C NMR), respectively, with sample 

temperatures regulated at 293 K, unless otherwise stated. Spectra have been assigned using COSY, 

DEPT-135, HSQC and HMBC. Chemical shifts  are reported in parts per million relative to the 
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internal reference TMS. Multiplicity is abbreviated as follows: s (singlet), d (doublet), t (triplet) and 

m (multiplet). Analytical TLC was performed on precoated silica gel plates (60 F254). The reagents 

and solvents were used as purchased from the chemical suppliers, with the exception of those for 

cyclisation reaction (dried dynamically over molecular sieve, 3 Å). The trimers 3
16

 and 6
15

 as well as 

quinizarin
36

 were prepared according to literature procedures. 1,4-Dimethoxyanthraquinone is 

commercially available. For the energy minimizations we used the program MacroModel V.9.8 

(OPLS_2001 forcefield, MCMM, 1,000 steps). 

 

     5-tert-Butyl-1,3-bis-(5-tert-butyl-2-methoxy-benzyl)-2-methoxybenzene (4)
37

. The phenolic 

trimer 3 (5.50 g, 11.6 mmol) was dissolved in THF (130 ml) and DMF (10 ml). Subsequently, NaH 

(60% in paraffin, 3.00 g, 127.6 mmol) and MeI (8.7 ml, 139.50 mmol) were added carefully. Heating 

under reflux for 4 h produced a white precipitate. Subsequently, the solvent was evaporated and the 

residue taken up in chloroform and water. The organic phase was separated and the solvent removed 

almost completely. The white precipitate of 4 formed after addition of MeOH was filtered, washed 

first with MeOH, then with ether and dried afterwards. Yield: 5.85 g (97 %). Mp. 138-139°C (Lit.
38

: 

140-141 °C). 
1
H-NMR (CDCl3): 1.17 (s, 9H, C(CH3)); 1.22 (s, 18H, C(CH3)); 3.61 (s, 3H, ArOCH3); 

3.81 (s, 6H, ArOCH3); 4.03 (s, 4H, ArCH2Ar); 6.80 (d, 2H, ArCH, 
3
JHH=8.5 Hz); 6.98 (s, 2H, 

ArCH); 7.06 (d, 2H, ArCH, 
4
JHH=2.5 Hz); 7.18 (dd, 2H, ArCH, 

3
JHH=8.5 Hz, 

4
JHH=2.5 Hz); 

13
C-

NMR (CDCl3): 30.0 (CH2), 31.4, 31.5 (C(CH3)); 34.0, 34.2 (C(CH3)); 55.4, 61.0 (ArOCH3); 109.7, 

123.3, 126.1, 127.7, 129.1, 132.5, 142.8, 145.9, 154.9, 155.4 (ArC). m/z (ESI): Calc.: 516.36, found: 

555.26 (M+K
+
) IR (cm

-1
): 2951, 2901, 2865, 2836, 1609, 1505, 1461, 1245, 1135, 1011, 816. 

Elemental analysis calculated for C35H48O3: C, 81.35 %; H, 9.36 %. Found: C, 81.72 %; H, 9.82 %. 
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     1,3-Bis{[3-(bromomethyl)-5-(tert-butyl)-2-methoxy-phenyl]methyl}]-5-(tert-butyl)-2-

hydroxybenzene (5). Methyl ether 4 (3.00 g, 5.8 mmol), paraformaldehyde (0.42 g, 14.0 mmol) and 

glacial acetic acid (40 ml) were stirred for 1 h at 70 °C in a bomb tube. To the white suspension, zinc 

bromide (1.30 g, 5.8 mmol) and hydrogen bromide (33 % in glacial acetic acid, 5.8 ml) were added 

and stirring was continued for 5 h at 70 °C. After cooling down, the clear brown solution was poured 

into water, whereupon a white cloudy suspension appeared. After extraction with CH2Cl2, the organic 

phase was dried over MgSO4 und the solvent was evaporated under reduced pressure. The resulting 

brown oil was column chromatographed on SiO2 (eluent: n-hexane/ethyl acetate, 14:1) to yield 0.38 g 

(9 %) of a beige solid. Mp. 158-160 °C. TLC: Rf = 0.19 (SiO2; n-hexane/chloroform, 1:1). 
1
H-NMR 

(CDCl3): 1.20 (s, 27H, C(CH3)); 3.93 (s, 4H, ArCH2Ar); 3.95 (s, 6H, ArOCH3); 4.58 (s, 4H, 

ArCH2OAr); 6.98 (s, 2H, ArCH); 7.15 (d, 2H, ArCH, 
4
JHH=2.5 Hz); 7.24 (d, 2H, ArCH, 

4
JHH=2.5 

Hz); 7.34 (s, 1H, ArOH); 
13

C-NMR (CDCl3): 28.8, 31.0 (CH2); 31.3, 31.5 (C(CH3)); 34.0, 34.3 

(C(CH3)); 62.2 (ArOCH3); 125.6, 126.5, 126.7, 128.9, 130.3, 133.3, 142.7, 147.8, 149.9, 153.2 

(ArC). m/z (APCI): Calc.: 688.19, found: 687.50 [M
-
]. IR (cm

-1
): 3374, 2956, 2901, 2866, 1600, 

1481, 1434, 1218, 1203, 988, 880, 751. Elemental analysis calculated for C36H48Br2O3 · 2 H2O: C, 

59.67 %; H, 7.23 %. Found: C, 59.17 %; H, 7.06 %. Additionally to 5, we isolated 0.15 g (4 % yield) 

of the fully methylated trimer 6. 

 

     1,3-Bis{[3-(bromomethyl)-5-(tert-butyl)-2-methoxy-phenyl]methyl}]-5-(tert-butyl)-2-

methoxybenzene (6). Under an argon atmosphere methyl ether 4 (4.75 g, 9.2 mmol), dissolved in 

TFA (20 ml), was treated with bromomethyl methyl ether (1.0 ml, 1.53 g, 12.3 mmol). After 24 h the 

brownish solution was quenched with water, followed by extraction with CHCl3. The organic phase 

was dried over MgSO4 und the solvent was evaporated under reduced pressure. The resulting green 

oil was column chromatographed on SiO2 (eluent: n-hexane/chloroform, 1:1 1:2) to yield 0.70 g 
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(11 %) of a colorless oil, which crystallized later. Mp. 120-122 °C. TLC: Rf = 0.25 (SiO2; n-

hexane/chloroform, 1:1). 
1
H-NMR (CDCl3): 1.16 (s, 9H, C(CH3)); 1.21 (s, 18H, C(CH3)); 3.59 (s, 

3H, ArOCH3); 3.84 (s, 6H, ArOCH3);  4.08 (s, 4H, ArCH2Ar); 4.61 (s, 4H, ArCH2Br); 6.94 (s, 2H, 

ArCH); 7.02 (d, 2H, ArCH, 
4
JHH=2.5 Hz); 7.25 (d, 2H, ArCH, 

4
JHH=2.6 Hz); 

13
C-NMR (CDCl3): 

29.1, 29.9 (CH2); 31.3, 31.4 (C(CH3)); 34.2, 34.3 (C(CH3)); 60.8, 61.3 (ArOCH3); 126.2, 126.2, 

128.9, 130.3, 132.5, 133.9, 146.5, 147.0, 154.5, 154.7 (ArC). m/z (ESI): Calc.: 702.21, found: 725.30 

[M+Na
+
], 741.3 [M+K

+
]. IR (cm

-1
): 3672, 2955, 2826, 1583, 1480, 1220, 1203, 1006, 882. Elemental 

analysis calculated for C36H48Br2O3 · H2O: C, 62.45 %; H, 7.22 %. Found: C, 62.13 %; H, 7.41 %. 

 

     General Synthetic Procedures for Macrocycles 1 and 2. Under an argon atmosphere the 

respective trimer 5 or 6 and quinizarin, each dissolved in dry acetone (250 ml per 0.55 mmol of the 

trimer), are slowly dropped into a refluxing suspension of K2CO3 (4 eq) in dry acetone (100 ml per 

0.55 mmol trimer) using a high-dilution apparatus.
21

 The color of the reaction mixture changes from 

dark blue to dark green. After 48 h of refluxing, solid components are removed by filtration. The 

solvent was evaporated and the resulting reddish brown oil was column chromatographed on SiO2 

(eluent for 1: chloroform/ethyl acetate, 24:1; eluent for 2: n-hexane/ethyl acetate, 2:1) to yield 

macrocycles 1 and 2 as orange solids. 

     2,10-Dioxa-4
4
,6

4
,8

4
-tri-tert-butyl-4

1
,6

1
,8

1
-trimethoxy-1(1,4)-anthraquinona-4,6,8(2,6)-

tribenzenacyclodecaphane (1). Yield 435 mg (58 %). Mp. 280-282 °C. TLC: Rf = 0.44 (SiO2; 

chloroform/ethyl acetate, 24:1).
1
H-NMR (CDCl3): 0.86 (s, 18H, C(CH3)); 1.38 (s, 9H, C(CH3)); 3.50 

(s, 2H, ArCH2Ar);
39

 3.63 (s, 3H, ArOCH3); 3.72 (s, 6H, ArOCH3); 4.31 (s, 2H, ArCH2Ar);
39

 5.37 (s, 

4H, ArCH2OAr); 6.78 (s, 2H, 37-, 38-ArCH); 6.81 (s, 2H, 5-, 17-ArCH); 7.11 (d, 2H, 3-, 19-ArCH, 

4
JHH=1.5 Hz); 7.25 (s, 2H, 10-, 12-ArCH); 7.69 (m, 2H, 44-, 45-ArCH); 8.18 (m, 2H, 43-, 46-ArCH); 

13
C-NMR (CDCl3): 31.0 (C(CH3)); 31.5 (CH2); 31.6 (C(CH3)); 33.9, 34.2 (C(CH3)); 60.3, 62.3 
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(ArOCH3); 64.4 (OCH2); 122.7 (40-, 49- ArC); 123.0 (37-, 38-ArC); 124.0 (3-, 19-ArC); 126.3 (43-

, 46-ArC); 126.8 (10-, 12-ArC); 127.0 (5-, 17-ArC); 128.3 (2-, 20-ArC); 132.9 (9-, 13-ArC); 133.0 

(44-, 45-ArC); 134.3 (42-, 47-ArC); 134.5 (6-, 16-ArC); 145.8 (11-ArC); 146.7 (4-, 18-ArC); 151.9 

(36-, 39-ArC); 153.8 (1-, 15-ArC); 155.0 (8-ArC); 183.4 (C=O). m/z (ESI): Calc.: 780.40, found: 

803.37 (M+Na
+
). IR (cm

-1
): 3442, 2960, 2905, 2870, 2826, 1668, 1595, 1567, 1483, 1465, 1255, 

1238, 1216, 1014, 727. Elemental analysis calculated for C51H56O7 · ½ CH3COOCH2CH3: C, 77.16 

%; H, 7.33 %. Found: C, 77.01 %; H, 7.36 %. 

     4
1
,8

1
-Dimethoxy-2,10-dioxa-6

1
-hydroxy-4

4
,6

4
,8

4
-tri-tert-butyl-1(1,4)-anthraquinona-

4,6,8(2,6)-tribenzenacyclodecaphane (2). Yield: 75 mg (18 %). Mp. 234-236 °C. TLC: Rf = 0.22 

(SiO2; n-hexane/ethyl acetate, 2:1). 
1
H-NMR (CDCl3): 0.88 (s, 18H, C(CH3)); 1.34 (s, 9H, C(CH3)); 

3.44 (br s, 2H, ArCH2Ar); 3.91 (s, 6H, ArOCH3); 4.30 (br s, 2H, ArCH2Ar); 5.38 (br s, 2H, 

ArCH2OAr); 5.45 (br s, 2H, ArCH2OAr); 6.62 (s, 1H, ArOH); 6.89 (d, 2H, 5-, 17-ArCH, 
4
JHH=2.5 

Hz); 7.13 (s, 2H, 37-, 38-ArCH); 7.19 (s, 2H, 10-, 12-ArCH); 7.23 (d, 2H, 3-, 19-ArCH, 
4
JHH=2.5 

Hz); 7.68 (m, 2H, 44-, 45-ArCH); 8.15 (m, 2H, 43-, 46-ArCH); 
13

C-NMR (CDCl3): 30.3 (CH2); 30.9, 

31.7 (C(CH3)); 33.9, 34.0 (C(CH3)); 63.3 (OCH2); 63.8 (ArOCH3); 121.7 (37-, 38-ArC); 122.7 (40-, 

49-ArC); 125.0 (3-, 19-ArC); 126.2 (44-, 45-ArC); 126.4 (10-, 12-ArC); 126.5 (9-, 13-ArC); 127.1 

(5-, 17-ArC); 128.2 (2-, 20-ArC); 132.0 (6-, 16-ArC); 132.9 (43-, 46-ArC); 134.5 (42-, 47-ArC); 

142.1 (11-ArC); 147.8 (21-, 29-ArC); 150.0 (8-ArC); 151.5 (36-, 39-ArC); 152.5 (1-, 15-ArC); 183.3 

(C=O). m/z (ESI): Calc.: 766.39, found: 789.40 (M+Na
+
). IR (cm

-1
): 2953, 1667, 1635, 1591, 1568, 

1483, 1237, 1210, 981, 795, 726. Elemental analysis calculated for C50H54O7 · ½ CH3COOCH2CH3: 

C, 77.01 %; H, 7.21 %. Found: C, 76.91 %; H, 7.60 %.  

 

     X-ray structure determination. Crystals of compounds 1a, 2a and 4 suitable for X-ray 

diffraction have been obtained by slow evaporation of the respective solution (1 in 
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acetonitrile/chloroform (1:1), 2 in acetonitrile and 4 in ethyl acetate). The intensity data were 

collected at 100 K on a Bruker Kappa diffractometer equipped with an APEX II CCD area detector 

and graphite-monochromatized Mo Kα radiation (λ = 0.71073 Å) employing φ and ω scan modes. 

The data were corrected for Lorentz and polarization effects. Semiempirical absorption correction 

was applied using the SADABS program.
40

 The SAINT program
40

 was used for the integration of the 

diffraction profiles. The crystal structures were solved by direct methods using SHELXS-97
41

 and 

refined by full-matrix least-squares refinement against F
2
 using SHELXL-97.

41
 All non-hydrogen 

atoms were refined anisotropically. Hydrogen atoms were positioned geometrically and allowed to 

ride on their parent atoms. Geometrical calculations were performed using PLATON and molecular 

graphics were generated using SHELXTL.
41

 The crystallographic data for the structures in this paper 

have been deposited with the Cambridge Crystallographic Data Centre; CCDC numbers: 1042786 

(1), 1042787 (2) and 1042788 (4). 
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