92 research outputs found

    Systematic Review of topotecan (Hycamtin) in relapsed small cell lung cancer

    Get PDF
    Background: To undertake a systematic review of the available data for oral and intravenous topotecan in adults with relapsed small cell lung cancer (SCLC) for whom re-treatment with the first line regimen is not considered appropriate. Methods: We searched six databases from 1980 up to March 2009 for relevant trials regardless of language or publication status. Relevant studies included any randomised trial of any chemotherapeutic treatment against any comparator in this licensed indication. Where possible we used apposite quantitative methods. Where meta-analysis was considered unsuitable for some or all of the data, we employed a narrative synthesis method. For indirect comparisons we used the method of Bucher et al., where available data allowed it, otherwise we used narrative descriptions. Results: Seven unique studies met the inclusion criteria, four of which could be used in our analyses. These included one study comparing oral topotecan plus best supportive care (BSC) to BSC alone, one study comparing intravenous topotecan to cyclophosphamide, adriamycin and vincristine (CAV), and two studies comparing oral topotecan with intravenous topotecan. All four studies appear to be well conducted and with low risk of bias. Oral topotecan plus BSC has advantages over BSC alone in terms of survival (hazard ratio = 0.61; 95% CI, 0.43 to 0.87) and quality of life (EQ-5 D difference: 0.15; 95% CI, 0.05 to 0.25). Intravenous topotecan was at least as effective as CAV in the treatment of patients with recurrent small-cell lung cancer and resulted in improved quality-of-life with respect to several symptoms. CAV was associated with significantly less grade 4 thrombocytopenia compared with IV topotecan (risk ratio = 5.83; 95% CI, 2.35 to 14.42). Survival (hazard ratio = 0.98; 95% CI, 0.77 to 1.25) and response (pooled risk ratio = 1.04; 95% CI, 0.58 to 1.85) data were similar for the oral and IV topotecan groups. Symptom control was also very similar between the trials and between the oral and IV groups. Toxicity data showed a significant difference in favour of oral topotecan for neutropenia (pooled risk ratio = 0.65; 95% CI, 0.47 to 0.89). Indirect evidence showed that oral topotecan was at least as good as or better than CAV on all outcomes (survival, response rates, toxicities, and symptoms) that allowed indirect comparisons, with the only exception being grade four thrombocytopenia which occurred less often on CAV treatment. Conclusions: Concerning topotecan both the oral and intravenous options have similar efficacy, and patient preference may be a decisive factor if the choice would be between the two formulations. The best trial evidence for decision making, because it was tested versus best supportive care, exists for oral topotecan. Indirectly, because we have two head-to-head comparisons of oral versus intravenous topotecan, and one comparison of intravenous topotecan versus CAV in similar patients as in the trial against best supportive care, one might infer that IV topotecan and CAV could also be superior to best supportive care, and that oral topotecan has similar effects to CAV with possibly better symptom control. From the evidence discussed above, it is evident that oral topotecan has similar efficacy to IV topotecan (direct comparison) and CAV (indirect comparison). There is no further evidence base of direct or possible indirect comparisons for other comparators than CAV of either oral or IV topotecan

    Continuous hyperfractionated accelerated radiotherapy - Escalated dose (CHART-ED): A phase i study

    Get PDF
    Patients who present with locally advanced inoperable non-small cell lung cancer (NSCLC) may be suitable for radical radiotherapy. A randomised trial of 563 patients compared CHART and conventional radical radiotherapy (60 Gy/30f) given over 6 weeks and suggested that CHART resulted in a 9% improvement in 2-year survival (Saunders et al., 1999). RT dose escalation for both conventional and CHARTWEL (CHART-WeekEndLess) - fractionation schedules is feasible with modern 3-dimensional CT-based planning techniques and we initiated a phase I CHART dose escalation study in 2009. Methods Patients with WHO performance status 0-2 histologically confirmed, inoperable, stage I-III non-small cell lung cancer were recruited into an open phase I dose escalation trial. Three cohorts of six patients were recruited sequentially. Total dose was escalated from standard CHART radiotherapy of 54 Gy/36f/12 days to 57.6 Gy (2 × 1.8 Gy fractions on day 15, Group 1), 61.2 Gy (4 × 1.8 Gy fractions on days 15-16, Group 2) and 64.8 Gy (6 × 1.8 Gy fractions on days 15-17, Group 3). Results Between April 2010 and May 2012, 18 patients were enrolled from 5 UK centres and received escalated dose radiotherapy. 14 were male, 16 squamous cell histology and 12 were stage IIIA or IIIB. The median age was 70 years and baseline characteristics were similar across the three dose cohorts. One patient did not start escalated radiotherapy but all remaining patients completed their planned radiotherapy schedules. Of these 9 patients have died to date with a median survival of 2 years across the three cohorts. Grade 3 or 4 adverse events (fatigue, dysphagia, nausea and anorexia - classified according to the National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE) version 4.0) were reported in 6 patients but the pre-specified dose limiting toxicities (grade 4 early oesophagitis; grade 3 cardiac, spinal cord and pneumonitis) were not observed. Conclusions CHART remains a radiotherapy schedule in routine use across the UK and in this dose escalation study no dose limiting toxicities were observed. We feel the dose of 64.8 Gy/42f/17 days should be taken forward into further clinical trials. The sample size used in this study was small so we plan a randomised phase II study that includes other radiotherapy schedules to confirm safety and select an accelerated sequential chemo-radiotherapy schedule to take into phase III studies

    Muscle Loss: The New Malnutrition Challenge in Clinical Practice

    Get PDF
    Recent definitions of malnutrition include low muscle mass within its diagnostic criteria. In fact, malnutrition is one of the main risk factors of skeletal muscle loss contributing to the onset of sarcopenia. However, differences in the screening and diagnosis of skeletal muscle loss, especially as a result of malnutrition in clinical and community settings, still occur mainly as techniques and thresholds used vary in clinical practice. The objectives of this position paper are firstly to emphasize the link between skeletal muscle loss and malnutrition-related conditions and secondly to raise awareness for the timely identification of loss of skeletal muscle mass and function in high risk populations. Thirdly to recognize the need to implement appropriate nutritional strategies for prevention and treatment of skeletal muscle loss and malnutrition across the healthcare continuum. Malnutrition needs to be addressed clinically as a muscle-related disorder and clinicians should integrate nutritional assessment with muscle mass measurements for optimal evaluation of these two interrelated entities to tailor interventions appropriately. The design of monitoring/evaluation and discharge plans need to include multimodal interventions with nutrition and physical exercise that are key to preserve patient’s muscle mass and function in clinical and community settings

    Promoting advance planning for health care and research among older adults: A randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Family members are often required to act as substitute decision-makers when health care or research participation decisions must be made for an incapacitated relative. Yet most families are unable to accurately predict older adult preferences regarding future health care and willingness to engage in research studies. Discussion and documentation of preferences could improve proxies' abilities to decide for their loved ones. This trial assesses the efficacy of an advance planning intervention in improving the accuracy of substitute decision-making and increasing the frequency of documented preferences for health care and research. It also investigates the financial impact on the healthcare system of improving substitute decision-making.</p> <p>Methods/Design</p> <p>Dyads (<it>n </it>= 240) comprising an older adult and his/her self-selected proxy are randomly allocated to the experimental or control group, after stratification for type of designated proxy and self-report of prior documentation of healthcare preferences. At baseline, clinical and research vignettes are used to elicit older adult preferences and assess the ability of their proxy to predict those preferences. Responses are elicited under four health states, ranging from the subject's current health state to severe dementia. For each state, we estimated the public costs of the healthcare services that would typically be provided to a patient under these scenarios. Experimental dyads are visited at home, twice, by a specially trained facilitator who communicates the dyad-specific results of the concordance assessment, helps older adults convey their wishes to their proxies, and offers assistance in completing a guide entitled <it>My Preferences </it>that we designed specifically for that purpose. In between these meetings, experimental dyads attend a group information session about <it>My Preferences</it>. Control dyads attend three monthly workshops aimed at promoting healthy behaviors. Concordance assessments are repeated at the end of the intervention and 6 months later to assess improvement in predictive accuracy and cost savings, if any. Copies of completed guides are made at the time of these assessments.</p> <p>Discussion</p> <p>This study will determine whether the tested intervention guides proxies in making decisions that concur with those of older adults, motivates the latter to record their wishes in writing, and yields savings for the healthcare system.</p> <p>Trial Registration</p> <p><a href="http://www.controlled-trials.com/ISRCTN89993391">ISRCTN89993391</a></p

    Stop smoking!

    No full text
    corecore