31 research outputs found

    Monitoring the proportion of the population infected by SARS-CoV-2 using age-stratified hospitalisation and serological data: a modelling study.

    Get PDF
    BACKGROUND: Regional monitoring of the proportion of the population who have been infected by SARS-CoV-2 is important to guide local management of the epidemic, but is difficult in the absence of regular nationwide serosurveys. We aimed to estimate in near real time the proportion of adults who have been infected by SARS-CoV-2. METHODS: In this modelling study, we developed a method to reconstruct the proportion of adults who have been infected by SARS-CoV-2 and the proportion of infections being detected, using the joint analysis of age-stratified seroprevalence, hospitalisation, and case data, with deconvolution methods. We developed our method on a dataset consisting of seroprevalence estimates from 9782 participants (aged ≄20 years) in the two worst affected regions of France in May, 2020, and applied our approach to the 13 French metropolitan regions over the period March, 2020, to January, 2021. We validated our method externally using data from a national seroprevalence study done between May and June, 2020. FINDINGS: We estimate that 5·7% (95% CI 5·1-6·4) of adults in metropolitan France had been infected with SARS-CoV-2 by May 11, 2020. This proportion remained stable until August, 2020, and increased to 14·9% (13·2-16·9) by Jan 15, 2021. With 26·5% (23·4-29·8) of adult residents having been infected in Île-de-France (Paris region) compared with 5·1% (4·5-5·8) in Brittany by January, 2021, regional variations remained large (coefficient of variation [CV] 0·50) although less so than in May, 2020 (CV 0·74). The proportion infected was twice as high (20·4%, 15·6-26·3) in 20-49-year-olds than in individuals aged 50 years or older (9·7%, 6·9-14·1). 40·2% (34·3-46·3) of infections in adults were detected in June to August, 2020, compared with 49·3% (42·9-55·9) in November, 2020, to January, 2021. Our regional estimates of seroprevalence were strongly correlated with the external validation dataset (coefficient of correlation 0·89). INTERPRETATION: Our simple approach to estimate the proportion of adults that have been infected with SARS-CoV-2 can help to characterise the burden of SARS-CoV-2 infection, epidemic dynamics, and the performance of surveillance in different regions. FUNDING: EU RECOVER, Agence Nationale de la Recherche, Fondation pour la Recherche MĂ©dicale, Institut National de la SantĂ© et de la Recherche MĂ©dicale (Inserm)

    Seroprevalence of anti-HEV IgG in children: very early exposure in young children in a hyperendemic region

    Get PDF
    Background and objectivesHepatitis E virus (HEV) can be considered an emerging zoonotic pathogen and is an important cause of acute viral hepatitis in high-income countries. Corsica has been identified as a hyperendemic region for HEV. We aimed to characterize the prevalence of IgG among children and estimate the annual force of infection of HEV.MethodsFrom April 2020 to June 2021, we collected 856 “residual sera” in 13 medical biology laboratories. Sera were tested using the Wantaï HEV IgG assay. Data were weighted according to the distribution by sex and age of the real Corsican population. Serocatalytic models were applied to assess the annual force of infection of HEV.ResultsThe weighted seroprevalence was 30.33% [27.15–34.0]. The seroprevalence was only associated with increasing age (7.25–40.52%; p < 0.001). The annual probability of infection was 5.4% for adults and children above 10-year-old and 2.2% for children under 10 yo.ConclusionOur study demonstrates that in the hyperendemic island of Corsica, (i) exposure of the population to HEV is homogeneous at the spatial level with no difference between genders; (ii) HEV exposure occurs from birth, resulting in 7.4% seropositivity at the age of 4 years; and (iii) super exposure is observed after the age of 9 years. Accordingly, specific studies should be conducted to determine the breadth of the situation identified in our study. The role of the environment and its contamination by domestic or wild swine excreta should be investigated using a One Health approach

    Spatial Distribution and Burden of Emerging Arboviruses in French Guiana.

    Get PDF
    Despite the health, social and economic impact of arboviruses in French Guiana, very little is known about the extent to which infection burden is shared between individuals. We conducted a large multiplexed serological survey among 2697 individuals from June to October 2017. All serum samples were tested for IgG antibodies against DENV, CHIKV, ZIKV and MAYV using a recombinant antigen-based microsphere immunoassay with a subset further evaluated through anti-ZIKV microneutralization tests. The overall DENV seroprevalence was estimated at 73.1% (70.6-75.4) in the whole territory with estimations by serotype at 68.9% for DENV-1, 38.8% for DENV-2, 42.3% for DENV-3, and 56.1% for DENV-4. The overall seroprevalence of CHIKV, ZIKV and MAYV antibodies was 20.3% (17.7-23.1), 23.3% (20.9-25.9) and 3.3% (2.7-4.1), respectively. We provide a consistent overview of the burden of emerging arboviruses in French Guiana, with useful findings for risk mapping, future prevention and control programs. The majority of the population remains susceptible to CHIKV and ZIKV, which could potentially facilitate the risk of further re-emergences. Our results underscore the need to strengthen MAYV surveillance in order to rapidly detect any substantial changes in MAYV circulation patterns

    Assessing the public health impact of tolerance-based therapies with mathematical models

    No full text
    <div><p>Disease tolerance is a defense strategy against infections that aims at maintaining host health even at high pathogen replication or load. Tolerance mechanisms are currently intensively studied with the long-term goal of exploiting them therapeutically. Because tolerance-based treatment imposes less selective pressure on the pathogen it has been hypothesised to be “evolution-proof”. However, the primary public health goal is to reduce the incidence and mortality associated with a disease. From this perspective, tolerance-based treatment bears the risk of increasing the prevalence of the disease, which may lead to increased mortality. We assessed the promise of tolerance-based treatment strategies using mathematical models. Conventional treatment was implemented as an increased recovery rate, while tolerance-based treatment was assumed to reduce the disease-related mortality of infected hosts without affecting recovery. We investigated the endemic phase of two types of infections: acute and chronic. Additionally, we considered the effect of pathogen resistance against conventional treatment. We show that, for low coverage of tolerance-based treatment, chronic infections can cause even more deaths than without treatment. Overall, we found that conventional treatment always outperforms tolerance-based treatment, even when we allow the emergence of pathogen resistance. Our results cast doubt on the potential benefit of tolerance-based over conventional treatment. Any clinical application of tolerance-based treatment of infectious diseases has to consider the associated detrimental epidemiological feedback.</p></div

    Selection for infectivity profiles in slow and fast epidemics, and the rise of SARS-CoV-2 variants

    No full text
    International audienceEvaluating the characteristics of emerging SARS-CoV-2 variants of concern is essential to inform pandemic risk assessment. A variant may grow faster if it produces a larger number of secondary infections (“R advantage”) or if the timing of secondary infections (generation time) is better. So far, assessments have largely focused on deriving the R advantage assuming the generation time was unchanged. Yet, knowledge of both is needed to anticipate the impact. Here, we develop an analytical framework to investigate the contribution of both the R advantage and generation time to the growth advantage of a variant. It is known that selection on a variant with larger R increases with levels of transmission in the community. We additionally show that variants conferring earlier transmission are more strongly favored when the historical strains have fast epidemic growth, while variants conferring later transmission are more strongly favored when historical strains have slow or negative growth. We develop these conceptual insights into a new statistical framework to infer both the R advantage and generation time of a variant. On simulated data, our framework correctly estimates both parameters when it covers time periods characterized by different epidemiological contexts. Applied to data for the Alpha and Delta variants in England and in Europe, we find that Alpha confers a+54% [95% CI, 45–63%] R advantage compared to previous strains, and Delta +140% [98–182%] compared to Alpha, and mean generation times are similar to historical strains for both variants. This work helps interpret variant frequency dynamics and will strengthen risk assessment for future variants of concern

    Evaluation of the efficacy of TOL and ROL in acute and chronic infections.

    No full text
    <p>Equilibrium values of the incidence (A, D), prevalence (B, E), and fraction of mortality due to infection (C, F), which normalizes the disease-induced mortality by the overall mortality. These epidemiological measures are plotted against the fraction of the population that receives treatment. The effect of TOL is displayed in light red, that of ROL in black, and that of TOL and ROL combined in blue. Parameters for both acute and chronic infections are given in the Methods section.</p

    Seroprevalence of anti-HEV IgG in children: very early exposure in young children in a hyperendemic region

    No full text
    International audienceBackground and objectives Hepatitis E virus (HEV) can be considered an emerging zoonotic pathogen and is an important cause of acute viral hepatitis in high-income countries. Corsica has been identified as a hyperendemic region for HEV. We aimed to characterize the prevalence of IgG among children and estimate the annual force of infection of HEV. Methods From April 2020 to June 2021, we collected 856 “residual sera” in 13 medical biology laboratories. Sera were tested using the Wantaï HEV IgG assay. Data were weighted according to the distribution by sex and age of the real Corsican population. Serocatalytic models were applied to assess the annual force of infection of HEV. Results The weighted seroprevalence was 30.33% [27.15–34.0]. The seroprevalence was only associated with increasing age (7.25–40.52%; p &lt; 0.001). The annual probability of infection was 5.4% for adults and children above 10-year-old and 2.2% for children under 10 yo. Conclusion Our study demonstrates that in the hyperendemic island of Corsica, (i) exposure of the population to HEV is homogeneous at the spatial level with no difference between genders; (ii) HEV exposure occurs from birth, resulting in 7.4% seropositivity at the age of 4 years; and (iii) super exposure is observed after the age of 9 years. Accordingly, specific studies should be conducted to determine the breadth of the situation identified in our study. The role of the environment and its contamination by domestic or wild swine excreta should be investigated using a One Health approach
    corecore