31 research outputs found

    Direct intra-tumoral injection of zinc-acetate halts tumor growth in a xenograft model of prostate cancer

    Get PDF
    Intracellular levels of zinc have shown a strong inverse correlation to growth and malignancy of prostate cancer. To date, studies of zinc supplementation in prostate cancer have been equivocal and have not accounted for bioavailability of zinc. Therefore, we hypothesized that direct intra-tumoral injection of zinc could impact prostate cancer growth. In this study, we evaluated the cytotoxic properties of the pH neutral salt zinc acetate on the prostate cancer cell lines PC3, DU145 and LNCaP. Zinc acetate killed prostate cancer cell lines in vitro, independent of androgen sensitivity, in a dose-dependent manner in a range between 200 and 600 μM. Cell death occurred rapidly with 50% cell death by six hours and maximal cell death by 18 hours. We next established a xenograft model of prostate cancer and tested an experimental treatment protocol of direct intra-tumoral injection of zinc acetate. We found that zinc treatments halted the growth of the prostate cancer tumors and substantially extended the survival of the animals, whilst causing no detectable cytoxicity to other tissues. Thus, our studies form a solid proof-of-concept that direct intra-tumoral injection of zinc acetate could be a safe and effective treatment strategy for prostate cancer

    Candidiasis, Bacterial Vaginosis, Trichomoniasis and Other Vaginal Conditions Affecting the Vulva

    Get PDF
    info:eu-repo/semantics/publishedVersio

    Carbocyanine Dye Usage in Demarcating Boundaries of the Aged Human Red Nucleus

    Get PDF
    Background: Though the adult human magnocellular Red nucleus (mNr) is essentially vestigial and its boundaries with neighbouring structures have never been well demarcated, human studies in utero have shown a well developed semilunar mNr wrapping around the caudal parvicellular Red nucleus (pNr), similar to what is seen in quadrupeds. In the present study, we have sought to better delineate the morphological determinants of the adult human Red nucleus (ahRn). Methods and Findings: Serial sections of ahRn show fine myelinated fibers arising from pNr and turning toward the central tegmental tract. DiI was deposited within a well restricted region of ahRn at the fasciculus retroflexus level and the extent of label determined. Nissl-stained serial sections allowed production of a 3-D mNr model, showing rudimentary, vestigial morphology compared with its well developed infant homologue. DiI within this vestigial mNr region at the level of the oculomotor nerve showed labeled giant/large mNr neurons, coarse fiber bundles at the ventral tegmental decussation and lateral lemniscal label. Conclusions: Large amounts of DiI and a long incubation time have proven useful in aged human brain as a marker of long axons and large cell bodies of projecting neurons such as the rubrospinal projection and for clarifying nuclear boundaries of closed nuclei (e.g., the large human pNr). Our 3D model of adult human mNr appeared shrunken in shape and axiall

    Evidence that αC Region Is Origin of Low Modulus, High Extensibility, and Strain Stiffening in Fibrin Fibers

    Get PDF
    Fibrin fibers form the structural scaffold of blood clots and perform the mechanical task of stemming blood flow. Several decades of investigation of fibrin fiber networks using macroscopic techniques have revealed remarkable mechanical properties. More recently, the microscopic origins of fibrin's mechanics have been probed through direct measurements on single fibrin fibers and individual fibrinogen molecules. Using a nanomanipulation system, we investigated the mechanical properties of individual fibrin fibers. The fibers were stretched with the atomic force microscope, and stress-versus-strain data was collected for fibers formed with and without ligation by the activated transglutaminase factor XIII (FXIIIa). We observed that ligation with FXIIIa nearly doubled the stiffness of the fibers. The stress-versus-strain behavior indicates that fibrin fibers exhibit properties similar to other elastomeric biopolymers. We propose a mechanical model that fits our observed force extension data, is consistent with the results of the ligation data, and suggests that the large observed extensibility in fibrin fibers is mediated by the natively unfolded regions of the molecule. Although some models attribute fibrin's force-versus-extension behavior to unfolding of structured regions within the monomer, our analysis argues that these models are inconsistent with the measured extensibility and elastic modulus
    corecore