27 research outputs found
A promiscuous cytochrome P450 aromatic O-demethylase for lignin bioconversion
FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOMicrobial aromatic catabolism offers a promising approach to convert lignin, a vast source of renewable carbon, into useful products. Aryl-O-demethylation is an essential biochemical reaction to ultimately catabolize coniferyl and sinapyl lignin-derived a9FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO2013/08293-72014/10448-12016/22956-7We acknowledge funding from NSF grants to J.L.D. (MCB-1715176), K.N.H. (CHE-1361104), and E.L.N. (DEB-1556541 and MCB-1615365) and BBSRC grants to J.E.M. (BB/P011918/1, BB/L001926/1 and a studentship to S.J.B.M.). G.T.B., M.M.M., C.W.J., M.F.C., E.L.N.,
Organ donation in the United States
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72348/1/j.1600-6143.3.s4.4.x.pd
Insomnia symptoms and repressive coping in a sample of older Black and White women
BACKGROUND: This study examined whether ethnic differences in insomnia symptoms are mediated by differences in repressive coping styles. METHODS: A total of 1274 women (average age = 59.36 ± 6.53 years) participated in the study; 28% were White and 72% were Black. Older women in Brooklyn, NY were recruited using a stratified, cluster-sampling technique. Trained staff conducted face-to-face interviews lasting 1.5 hours acquiring sociodemographic data, health characteristics, and risk factors. A sleep questionnaire was administered and individual repressive coping styles were assessed. Fisher's exact test and Spearman and Pearson analyses were used to analyze the data. RESULTS: The rate of insomnia symptoms was greater among White women [74% vs. 46%; χ(2 )= 87.67, p < 0.0001]. Black women scored higher on the repressive coping scale than did White women [Black = 37.52 ± 6.99, White = 29.78 ± 7.38, F(1,1272 )= 304.75, p < 0.0001]. We observed stronger correlations between repressive coping and insomnia symptoms for Black [r(s )= -0.43, p < 0.0001] than for White women [r(s )= -0.18, p < 0.0001]. Controlling for variation in repressive coping, the magnitude of the correlation between ethnicity and insomnia symptoms was substantially reduced. Multivariate adjustment for differences in sociodemographics, health risk factors, physical health, and health beliefs and attitudes had little effect on the relationships. CONCLUSION: Relationships between ethnicity and insomnia symptoms are jointly dependent on the degree of repressive coping, suggesting that Black women may be reporting fewer insomnia symptoms because of a greater ability to route negative emotions from consciousness. It may be that Blacks cope with sleep problems within a positive self-regulatory framework, which allows them to deal more effectively with sleep-interfering psychological processes to stressful life events and to curtail dysfunctional sleep-interpreting processes
Implementation of an insecticide-treated net subsidy scheme under a public-private partnership for malaria control in Tanzania – challenges in implementation
BACKGROUND: In the past decade there has been increasing visibility of malaria control efforts at the national and international levels. The factors that have enhanced this scenario are the availability of proven interventions such as artemisinin-based combination therapy, the wide scale use of insecticide-treated nets (ITNs) and a renewed emphasis in indoor residual house-spraying. Concurrently, there has been a window of opportunity of financial commitments from organizations such as the Global Fund for HIV/AIDS, Tuberculosis and Malaria (GFATM), the President's Malaria Initiative and the World Bank Booster programme. METHODS: The case study uses the health policy analysis framework to analyse the implementation of a public-private partnership approach embarked upon by the government of Tanzania in malaria control - 'The Tanzania National Voucher Scheme'- and in this synthesis, emphasis is on the challenges faced by the scheme during the pre-implementation (2001 - 2004) and implementation phases (2004 - 2005). Qualitative research tools used include: document review, interview with key informants, stakeholder's analysis, force-field analysis, time line of events, policy characteristic analysis and focus group discussions. The study is also complemented by a cross-sectional survey, which was conducted at the Rufiji Health Demographic Surveillance Site, where a cohort of women of child-bearing age were followed up regarding access and use of ITNs. RESULTS: The major challenges observed include: the re-introduction of taxes on mosquito nets and related products, procurement and tendering procedures in the implementation of the GFATM, and organizational arrangements and free delivery of mosquito nets through a Presidential initiative. CONCLUSION: The lessons gleaned from this synthesis include: (a) the consistency of the stakeholders with a common vision, was an important strength in overcoming obstacles, (b) senior politicians often steered the policy agenda when the policy in question was a 'crisis event', the stakes and the visibility were high, (c) national stakeholders in policy making have an advantage in strengthening alliances with international organizations, where the latter can become extremely influential in solving bottlenecks as the need arises, and (d) conflict can be turned into an opportunity, for example the Presidential initiative has inadvertently provided Tanzania with important lessons in the organization of 'catch-up' campaigns
The Churches' Bans on Consanguineous Marriages, Kin-Networks and Democracy
This paper highlights the role of kin-networks for the functioning of modern societies: countries with strong extended families as characterized by a high level of cousin marriages exhibit a weak rule of law and are more likely autocratic. To assess causality, I exploit a quasi-natural experiment. In the early medieval ages the Church started to prohibit kin-marriages. Using the variation in the duration and extent of the Eastern and Western Churches' bans on consanguineous marriages as instrumental variables, reveals highly significant point estimates of the percentage of cousin marriage on an index of democracy. An additional novel instrument, cousin-terms, strengthens this point: the estimates are very similar and do not rest on the European experience alone. Exploiting within country variation of cousin marriages in Italy, as well as within variation of a 'societal marriage pressure' indicator for a larger set of countries support these results. These findings point to a causal effect of marriage patterns on the proper functioning of formal institutions and democracy. The study further suggests that the Churches' marriage rules - by destroying extended kin-groups - led Europe on its special path of institutional and democratic development
Origin of π‑Facial Stereoselectivity in Thiophene 1‑Oxide Cycloadditions
We report a DFT computational study (M06-2X) of π-facial selectivity in the Diels-Alder reactions of thiophene 1-oxide. The preference for the syn cycloaddition arises because the ground state geometry of thiophene 1-oxide is predistorted into an envelope conformation that resembles the syn transition state geometry. The syn distortion occurs to minimize the effect of hyperconjugative antiaromaticity in the thiophene 1-oxide, arising from overlap of the σ*SO with the π-system. The syn selectivity follows through to the product structure that is stabilized by a π-σ*SO interaction, related to the 7-norbornenyl ion stability
Recommended from our members
Conservative tryptophan mutants of the protein tyrosine phosphatase YopH exhibit impaired WPD-loop function and crystallize with divanadate esters in their active sites.
Catalysis in protein tyrosine phosphatases (PTPs) involves movement of a protein loop called the WPD loop that brings a conserved aspartic acid into the active site to function as a general acid. Mutation of the tryptophan in the WPD loop of the PTP YopH to any other residue with a planar, aromatic side chain (phenylalanine, tyrosine, or histidine) disables general acid catalysis. Crystal structures reveal these conservative mutations leave this critical loop in a catalytically unproductive, quasi-open position. Although the loop positions in crystal structures are similar for all three conservative mutants, the reasons inhibiting normal loop closure differ for each mutant. In the W354F and W354Y mutants, steric clashes result from six-membered rings occupying the position of the five-membered ring of the native indole side chain. The histidine mutant dysfunction results from new hydrogen bonds stabilizing the unproductive position. The results demonstrate how even modest modifications can disrupt catalytically important protein dynamics. Crystallization of all the catalytically compromised mutants in the presence of vanadate gave rise to vanadate dimers at the active site. In W354Y and W354H, a divanadate ester with glycerol is observed. Such species have precedence in solution and are known from the small molecule crystal database. Such species have not been observed in the active site of a phosphatase, as a functional phosphatase would rapidly catalyze their decomposition. The compromised functionality of the mutants allows the trapping of species that undoubtedly form in solution and are capable of binding at the active sites of PTPs, and, presumably, other phosphatases. In addition to monomeric vanadate, such higher-order vanadium-based molecules are likely involved in the interaction of vanadate with PTPs in solution
Recommended from our members
Histone Deacetylase 8: Characterization of Physiological Divalent Metal Catalysis.
Histone deacetylases (HDACs) are responsible for the removal of acetyl groups from histones, resulting in gene silencing. Overexpression of HDACs is associated with cancer, and their inhibitors are of particular interest as chemotherapeutics. However, HDACs remain a target of mechanistic debate. HDAC class 8 is the most studied HDAC, and of particular importance due to its human oncological relevance. HDAC8 has traditionally been considered to be a Zn-dependent enzyme. However, recent experimental assays have challenged this assumption and shown that HDAC8 is catalytically active with a variety of different metals, and that it may be a Fe-dependent enzyme in vivo. We studied two opposing mechanisms utilizing a series of divalent metal ions in physiological abundance (Zn(2+), Fe(2+), Co(2+), Mn(2+), Ni(2+), and Mg(2+)). Extensive sampling of the entire protein with different bound metals was done with the mixed quantum-classical QM/DMD method. Density functional theory (DFT) on an unusually large cluster model was used to describe the active site and reaction mechanism. We have found that the reaction profile of HDAC8 is similar among all metals tested, and follows one of the previously published mechanisms, but the rate-determining step is different from the one previously claimed. We further provide a scheme for estimating the metal binding affinities to the protein. We use the quantum theory of atoms in molecules (QTAIM) to understand the different binding affinities for each metal in HDAC8 as well as the ability of each metal to bind and properly orient the substrate for deacetylation. The combination of this data with the catalytic rate constants is required to reproduce the experimentally observed trend in metal-depending performance. We predict Co(2+) and Zn(2+) to be the most active metals in HDAC8, followed by Fe(2+), and Mn(2+) and Mg(2+) to be the least active
Conservative Tryptophan Mutants of the Protein Tyrosine Phosphatase YopH Exhibit Impaired WPD-Loop Function and Crystallize with Divanadate Esters in Their Active Sites
Catalysis in protein tyrosine phosphatases
(PTPs) involves movement
of a protein loop called the WPD loop that brings a conserved aspartic
acid into the active site to function as a general acid. Mutation
of the tryptophan in the WPD loop of the PTP YopH to any other residue
with a planar, aromatic side chain (phenylalanine, tyrosine, or histidine)
disables general acid catalysis. Crystal structures reveal these conservative
mutations leave this critical loop in a catalytically unproductive,
quasi-open position. Although the loop positions in crystal structures
are similar for all three conservative mutants, the reasons inhibiting
normal loop closure differ for each mutant. In the W354F and W354Y
mutants, steric clashes result from six-membered rings occupying the
position of the five-membered ring of the native indole side chain.
The histidine mutant dysfunction results from new hydrogen bonds stabilizing
the unproductive position. The results demonstrate how even modest
modifications can disrupt catalytically important protein dynamics.
Crystallization of all the catalytically compromised mutants in the
presence of vanadate gave rise to vanadate dimers at the active site.
In W354Y and W354H, a divanadate ester with glycerol is observed.
Such species have precedence in solution and are known from the small
molecule crystal database. Such species have not been observed in
the active site of a phosphatase, as a functional phosphatase would
rapidly catalyze their decomposition. The compromised functionality
of the mutants allows the trapping of species that undoubtedly form
in solution and are capable of binding at the active sites of PTPs,
and, presumably, other phosphatases. In addition to monomeric vanadate,
such higher-order vanadium-based molecules are likely involved in
the interaction of vanadate with PTPs in solution