163 research outputs found

    Genome-Wide Approaches To Study Rna Secondary Structure

    Get PDF
    The central hypothesis of molecular biology depicts RNA as an intermediary conveyor of genetic information. RNA is transcribed from DNA and translated to proteins, the molecular machines of the cell. However, many RNAs do not encode protein and instead function as molecular machines themselves. The most famous examples are ribosomal RNAs and transfer RNAs, which together form the core translational machinery of the cell. Many other non-coding RNAs have been discovered including catalytic and regulatory RNAs. In many cases RNA function is tightly linked to its secondary structure, which is the collection of hydrogen bonds between complimentary RNA sequences that drives these molecules into their three dimensional structure. Over the last decade, technology for determining the sequence of DNA and RNA has advanced rapidly, making transcriptome-wide expression profiling fast and widely available. In this dissertation, I discuss recent efforts to leverage this powerful technology to study, not just RNA expression, but several other aspects of RNA function. In particular, I focus on three tightly linked aspects of RNA biology: RNA-secondary structure, RNA cleavage, and regulatory small RNAs. I introduce a database for integrating, comparing, and contrasting techniques for determining RNA secondary structure including a technique developed in my dissertation laboratory. Additionally, I discuss a newly improved technology capable of detecting RNA cleavage events. Finally, I integrate RNA secondary structure probing and RNA cleavage detection to interrogate a family of genes important for eukaryotic small RNA-mediated silencing. These diverse analyses are just a few examples of the vast promises offered by adapting RNA-sequencing technology to probe RNA function across many cellular processes

    Evaluating the Effects of an Interdisciplinary Practice Model with Pharmacist Collaboration on HIV Patient Co-Morbidities

    Get PDF
    Treatment of HIV now occurs largely within the primary care setting, and the principal focus of most visits has become the management of chronic disease states. The clinical pharmacist’s potential role in improving chronic disease outcomes for HIV patients is unknown. A retrospective cohort study was performed for HIV-positive patients also diagnosed with diabetes, hypertension, or hyperlipidemia. Characteristics and outcomes in 96 patients treated by an interdisciplinary team which included a clinical pharmacist (i.e., the intervention group) were compared to those in 50 patients treated by an individual healthcare provider (i.e., the control group). Primary outcomes were changes from baseline over 18 month period of HbA1c, low density lipoprotein (LDL), and blood pressure, respectively. Secondary outcomes included number of drug-drug interactions, HIV viral load, CD4 count, percent change in smoking status, and percent of patients treated to cardiovascular guideline recommendations. The interdisciplinary team had a significant improvement in lipid management over the control group (LDL: -8.8 vs. +8.4 mg/dL; p=0.014), and the smoking cessation rate over the study period was doubled in the interdisciplinary group (20.4% vs. 11.8%). Among those with an indication for aspirin, a significantly higher percentage of patients were prescribed the medication in the interdisciplinary group compared to the control group (85.5% v. 64.9%; p=0.014). An informal cost analysis estimated savings of more than $3000 per patient treated by the interdisciplinary team. Based on these results, pharmacist involvement in an HIV primary care clinic appears to lead to more appropriate management of chronic co-morbidities in a cost-effective manner

    Use of mechanical circulatory support devices among patients with acute myocardial infarction complicated by cardiogenic shock

    Get PDF
    Importance: Mechanical circulatory support (MCS) devices, including intravascular microaxial left ventricular assist devices (LVADs) and intra-aortic balloon pumps (IABPs), are used in patients who undergo percutaneous coronary intervention (PCI) for acute myocardial infarction (AMI) complicated by cardiogenic shock despite limited evidence of their clinical benefit. Objective: To examine trends in the use of MCS devices among patients who underwent PCI for AMI with cardiogenic shock, hospital-level use variation, and factors associated with use. Design, Setting, and Participants: This cross-sectional study used the CathPCI and Chest Pain-MI Registries of the American College of Cardiology National Cardiovascular Data Registry. Patients who underwent PCI for AMI complicated by cardiogenic shock between October 1, 2015, and December 31, 2017, were identified from both registries. Data were analyzed from October 2018 to August 2020. Exposures: Therapies to provide hemodynamic support were categorized as intravascular microaxial LVAD, IABP, TandemHeart, extracorporeal membrane oxygenation, LVAD, other devices, combined IABP and intravascular microaxial LVAD, combined IABP and other device (defined as TandemHeart, extracorporeal membrane oxygenation, LVAD, or another MCS device), or medical therapy only. Main Outcomes and Measures: Use of MCS devices overall and specific MCS devices, including intravascular microaxial LVAD, at both patient and hospital levels and variables associated with use. Results: Among the 28 304 patients included in the study, the mean (SD) age was 65.4 (12.6) years and 18 968 were men (67.0%). The overall MCS device use was constant from the fourth quarter of 2015 to the fourth quarter of 2017, although use of intravascular microaxial LVADs significantly increased (from 4.1% to 9.8%; P \u3c .001), whereas use of IABPs significantly decreased (from 34.8% to 30.0%; P \u3c .001). A significant hospital-level variation in MCS device use was found. The median (interquartile range [IQR]) proportion of patients who received MCS devices was 42% (30%-54%), and the median proportion of patients who received intravascular microaxial LVADs was 1% (0%-10%). In multivariable analyses, cardiac arrest at first medical contact or during hospitalization (odds ratio [OR], 1.82; 95% CI, 1.58-2.09) and severe left main and/or proximal left anterior descending coronary artery stenosis (OR, 1.36; 95% CI, 1.20-1.54) were patient characteristics that were associated with higher odds of receiving intravascular microaxial LVADs only compared with IABPs only. Conclusions and Relevance: This study found that, among patients who underwent PCI for AMI complicated by cardiogenic shock, overall use of MCS devices was constant, and a 2.5-fold increase in intravascular microaxial LVAD use was found along with a corresponding decrease in IABP use and a significant hospital-level variation in MCS device use. These trends were observed despite limited clinical trial evidence of improved outcomes associated with device use

    Changes in an Enzyme Ensemble During Catalysis Observed by High Resolution XFEL Crystallography

    Get PDF
    Enzymes populate ensembles of structures with intrinsically different catalytic proficiencies that are difficult to experimentally characterize. We use time-resolved mix-and-inject serial crystallography (MISC) at an X-ray free electron laser (XFEL) to observe catalysis in a designed mutant (G150T) isocyanide hydratase (ICH) enzyme that enhances sampling of important minor conformations. The active site exists in a mixture of conformations and formation of the thioimidate catalytic intermediate selects for catalytically competent substates. A prior proposal for active site cysteine charge-coupled conformational changes in ICH is validated by determining structures of the enzyme over a range of pH values. A combination of large molecular dynamics simulations of the enzyme in crystallo and timeresolved electron density maps shows that ionization of the general acid Asp17 during catalysis causes additional conformational changes that propagate across the dimer interface, connecting the two active sites. These ionization-linked changes in the ICH conformational ensemble permit water to enter the active site in a location that is poised for intermediate hydrolysis. ICH exhibits a tight coupling between ionization of active site residues and catalysis-activated protein motions, exemplifying a mechanism of electrostatic control of enzyme dynamics

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    • …
    corecore