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Abstract
The central hypothesis of molecular biology depicts RNA as an intermediary conveyor of genetic information.
RNA is transcribed from DNA and translated to proteins, the molecular machines of the cell. However, many
RNAs do not encode protein and instead function as molecular machines themselves. The most famous
examples are ribosomal RNAs and transfer RNAs, which together form the core translational machinery of
the cell. Many other non-coding RNAs have been discovered including catalytic and regulatory RNAs. In
many cases RNA function is tightly linked to its secondary structure, which is the collection of hydrogen
bonds between complimentary RNA sequences that drives these molecules into their three dimensional
structure.

Over the last decade, technology for determining the sequence of DNA and RNA has advanced rapidly,
making transcriptome-wide expression profiling fast and widely available. In this dissertation, I discuss recent
efforts to leverage this powerful technology to study, not just RNA expression, but several other aspects of
RNA function. In particular, I focus on three tightly linked aspects of RNA biology: RNA-secondary
structure, RNA cleavage, and regulatory small RNAs. I introduce a database for integrating, comparing, and
contrasting techniques for determining RNA secondary structure including a technique developed in my
dissertation laboratory. Additionally, I discuss a newly improved technology capable of detecting RNA
cleavage events. Finally, I integrate RNA secondary structure probing and RNA cleavage detection to
interrogate a family of genes important for eukaryotic small RNA-mediated silencing. These diverse analyses
are just a few examples of the vast promises offered by adapting RNA-sequencing technology to probe RNA
function across many cellular processes.
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ABSTRACT 

GENOME-WIDE APPROACHES TO STUDY RNA SECONDARY STRUCTURE 

Nathan Berkowitz 

Brian Gregory 

The central hypothesis of molecular biology depicts RNA as an intermediary conveyor of 

genetic information. RNA is transcribed from DNA and translated to proteins, the 

molecular machines of the cell. However, many RNAs do not encode protein and instead 

function as molecular machines themselves. The most famous examples are ribosomal 
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RNAs and transfer RNAs, which together form the core translational machinery of the 

cell. Many other non-coding RNAs have been discovered including catalytic and 

regulatory RNAs. In many cases RNA function is tightly linked to its secondary structure, 

which is the collection of hydrogen bonds between complimentary RNA sequences that 

drives these molecules into their three dimensional structure.  

Over the last decade, technology for determining the sequence of DNA and RNA has 

advanced rapidly, making transcriptome-wide expression profiling fast and widely 

available. In this dissertation, I discuss recent efforts to leverage this powerful 

technology to study, not just RNA expression, but several other aspects of RNA function. 

In particular, I focus on three tightly linked aspects of RNA biology: RNA-secondary 

structure, RNA cleavage, and regulatory small RNAs. I introduce a database for 

integrating, comparing, and contrasting techniques for determining RNA secondary 

structure including a technique developed in my dissertation laboratory. Additionally, I 

discuss a newly improved technology capable of detecting RNA cleavage events. 

Finally, I integrate RNA secondary structure probing and RNA cleavage detection to 

interrogate a family of genes important for eukaryotic small RNA-mediated silencing. 

These diverse analyses are just a few examples of the vast promises offered by 

adapting RNA-sequencing technology to probe RNA function across many cellular 

processes. 
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Chapter 1: Introduction 

1.1 Post-transcriptional Regulation 

1.1.1 The Central Dogma 

 

Proteins are often thought of as molecular machines that do the work required for 

cellular life. They include motors, enzymes, signal receptors, structural elements and 

more. The Central Dogma, coined by Francis Crick, describes a model for protein 

synthesis.1 Specifically, the information required to build a protein is stored as a linear 

sequence of deoxyribonucleic acid (DNA) nucleotides. This sequence is then transcribed 

to a chemically similar ribonucleic acid (RNA) molecule. The RNA is then translated to 

protein. Since it was first proposed, many nuances and exceptions have been described. 

However, the Central Dogma has been, and still is, a powerful model for describing gene 

expression. 

 

1.1.2 Post-transcriptional Regulatory Processes 

 

Historically, there have been many important advances in understanding gene regulation 

at the transcriptional level. These regulatory processes include the binding of 

transcription factor proteins to DNA that subsequently control gene expression from that 

locus. Transcription factors increase expression and transcriptional repressors inhibit 
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expression from bound loci. The interplay of these proteins with DNA can explain many 

changes in gene expression. However, especially in eukaryotes, it has become 

increasingly clear that expression can also be controlled after RNAs are made by post-

transcriptional regulatory processes (PTGR).2–4 

A major factor in PTGR is transcript diversity. In eukaryotes, a single gene locus can 

give rise to multiple diverse transcripts. One straightforward consequence of this is that 

multiple different protein products can be made. More subtly, transcript variants can 

differ in the regulatory elements they contain leading to differences in stability and 

transcription. There are several ways in which transcript diversity can be introduced.5 

Before a protein coding transcript can be translated, it must undergo several processing 

steps to become a mature mRNA. Genes are not encoded on the chromosome 

contiguously. The exons, regions to be included in the mature transcript, are separated 

by introns, sequences that are not included. The full length of the gene is transcribed 

including both introns and exons as a pre-mRNA transcript. Exons are joined together 

and introns are excised by the spliceosome, a large catalytic complex composed of 

proteins and RNA molecules.5 

In this splicing process, not all exons are included in all transcripts. Optional cassette 

exons may be included or excluded resulting in multiple possible versions of the mature 

mRNA for the same gene. Additional, more complex exon inclusion patterns also affect 

the mature sequence. Exons may have alternate 5' or 3' splice junctions. Also, a pair of 

exons may be mutually exclusive. The combination of all of these diverse splicing 

choices leads to many possible mature mRNAs for a given pre-mRNA. This added 

diversity is an important mechanism of PTGR for protein coding genes as it leads to 
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many possible protein products, which can serve different functions. Additionally, 

alternative splicing can be important for PTGR as it may result in inclusion or exclusion 

of regulatory elements that affect translation or turnover.5,6 

In addition to being spliced, pre-mRNAs must also undergo modification to their 5' and 3' 

ends before they are mature. Both of these modifications increase the stability of the 

transcript. A modified guanosine, referred to as the 7-methyguanlate cap, is added to the 

5' end. Additionally, a region of the 3' end is cleaved and a polyadenosine (polyA) tail is 

added to the cleavage site. The addition of the tail is directed by a specific sequence on 

the pre-mRNA, the polyadeylation signal (PAS): AAUAAA. A given pre-mRNA may 

contain more than one PAS and the polyadenylation machinery may select different 

PAS's on individual transcript molecules. Like alternative splicing, alternative 

polyadenylation results in transcript diversity as different PAS choices lead to transcripts 

with different 3' ends and potentially different protein products. Also, like alternative 

splicing, it can control the inclusion or exclusion of regulatory elements in the sequence 

of the mature mRNA. 

Another source of transcript variation is alternative initiation of transcription. If there is 

more than one transcriptional initiation site, the transcriptional machinery may use them 

all. Just as alternative polyadenylation can lead to differences in the 3' ends of 

transcripts, alternative initiation can lead to differences in the 5' ends. These differences 

can lead to PTGR by generating variants that are translated with different efficiency.7 

There are many possible ways in which regulatory elements can affect gene expression. 

One general mechanism is that they can act as recognition sites for sequence specific 
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repressive factors. This is the case for transcripts regulated by a class of small RNAs 

(smRNAs) called micro-RNAs (miRNAs).  

From transcription to degradation, RNAs are constantly bound to proteins. They affect all 

aspects of a transcript's life cycle including splicing, translation, trafficking and stability. 

Many RBPs are sequence specific and bind to recurring nucleotide patterns on RNAs 

known as motifs. Discovery of motifs has been an appealing goal for computational 

study.4,8,9 Researchers have developed expectation maximization algorithms to find 

motifs without prior knowledge of the motif locations or motif sequences.10 One 

drawback is that the algorithms do not determine the RBP associated with the motif. 

More recently, motifs for a large number of RBPs were determined experimentally.11 

In addition to sequence motifs, RBPs may identify transcripts by recognizing RNA 

structural elements. One example of this type of structure based recognition is the 

mammalian iron response element, a short hairpin structure formed at the 5' end of 

several genes involved in iron metabolism. In the absence of iron, an RBP binds the 

hairpin and represses translation.12 

  

 

1.2 RNA Secondary Structure 

 

1.2.1 Non-coding RNAs and RNA Structure 
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One added complexity to the Central Dogma is the existence of RNAs that do not 

encode protein, but perform cellular functions without being translated (ncRNAs). Two of 

the most famous examples of such non-coding RNAs are transfer RNAs (tRNAs) and 

ribosomal RNAs (rRNAs) that are both required for translation in cells. While these 

ancient genes were once thought to be special exceptions to the general linear nature of 

the Central Dogma, many examples of important, functional ncRNAs have since been 

uncovered. For instance, RNAs have been found that act as catalysts13 as well as RNAs 

that fulfill a wide variety of regulatory roles.  

One broad category of ncRNAs which are intimately linked to secondary structure are 

small RNAs (smRNA). Many classes of small RNAs are processed from longer 

structured precursors. 

Perhaps the most famous class of smRNAs are miRNAs. These begin as Pol II 

transcripts which are capped and polyadenylated. They fold back on themselves forming 

a hairpin loop with a structured stem. This stem is then cleaved two or more times to 

produce short (~21-22 nt) non-coding RNAs that target other transcripts using base 

pairing interactions.  

In addition to miRNAs there are several other classes of smRNAs that function in PTGR. 

For example, small interfering RNAs (siRNAs), which are similar in size to miRNAs but 

differ from miRNAs in their biogenesis. They have a broader range of precursors than 

miRNA but they are also generated through cleavage of double stranded regions. 

siRNAs can post-transcriptionally regulate their targets. One class of siRNAs acts 

similarly to plant miRNAs, triggering cleavage and degradation. Another class is 
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processed from transcripts that are encoded at repetitive and heterochromatic regions. 

These siRNAs epigenetically silence the same types of regions from which they 

originate. 

Another broad class of ncRNAs are long non-coding RNAs (lncRNAs). These transcripts 

are capped and polyadenylated, but they do not encode protein. There are many known 

lncRNAs and many more suspected, although not all have been assigned functions. 

One well known example is Xist, a transcript from the X inactivations locus which is 

important in silencing one of the two X chromosomes in female mammals. Another is 

HOTAIR, which also has a role in regulating chromatin state. Both of these examples 

have high secondary structures and secondary structure is thought to be important to 

lncRNA function in general. 

In many cases, the functions of ncRNAs depend on both their sequence and their 

structure. I will discuss some examples of regulatory ncRNAs and their structural 

requirements in more detail, but first it is worth defining RNA structure. 

 

1.2.2 Levels of RNA Structure 

 

In addition to being a conveyor of information, RNA is also a physical molecule with its 

own chemical properties. In fact, every RNA is composed of a linear sequence of 

ribonucleotide monomers linked together through covalent bonds. This chain is flexible 
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and can fold into complex three-dimensional (3D) shapes. The 3D shape of an RNA 

depends on intra-molecular interactions to hold it into place. 

Based on this model, RNA structure can be dissected into distinct layers of information. 

The primary structure of a RNA is simply its sequence of nucleotides from beginning to 

end. The secondary structure is the pattern of intra-molecular interactions between these 

nucleotides. The tertiary structure of a RNA is its 3D geometry that is directed by its 

underlying secondary structure. 

Secondary structure is mostly composed of the hydrogen bonds between the nucleotide 

bases. Two of these bond types, the Watson-Crick pairs, mirror the bonds allowed in 

genomic DNA, Guanine (G) with Cytosine (C) and Adenine (A) with the Thymine (T) 

analog Uracil (U). Additionally, RNA can form hydrogen bonds between G and U. These 

are referred to as “wobble” base pairs because of their lower thermodynamic stability. 

The three layers of structure information are not independent of one another. The tertiary 

structure depends on the secondary structure, which, in turn depends on the set of 

possible interactions dictated by the primary sequence. However, each layer seems to 

have unique information. Later in this chapter, I will discuss some current methods for 

predicting secondary structure from primary structure, and in subsequent chapters I will 

compare them to direct secondary structure measurements.   
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1.2.3 Biological roles of RNA secondary structure 

 

For many RNAs, structure is linked to function. Examples of the importance of structure 

can be found in both splicing, the removal of introns from transcripts, and translation. 

The spliceosome, which is responsible for catalyzing the splicing reactions, is composed 

of proteins and small nuclear RNAs (snRNAs). These snRNAs must adopt specific 

structures for these catalytic reactions to occur properly.14,15 In translation, the RNAs that 

make up the ribosome (rRNAs) must adopt complex 3D structures in order to function 

properly.16–21 

Riboswitches are another example of the importance of RNA structure. These structured 

elements in mRNAs act as molecular detectors, typically for metabolites. In the presence 

of the riboswitch's preferred binding metabolite it changes its structural conformation 

resulting in a change in gene expression.22–25  There are many examples of riboswitches 

in bacteria that respond to diverse organic and inorganic metabolites24,26–30 and they 

have also been identified in eukaryotes as well.22,31,32 

 RNA secondary structure is also an important aspect of intra-molecular RNA-RNA 

interactions. Many classes of smRNAs use base pairing to identify target transcripts. 

Throughout this dissertation, I briefly discussed two such classes, small-interfering RNAs 

and microRNAs (siRNAs and miRNAs, respectively). In later chapters I will revisit them 

in more detail. Another such class is the small nucleolar RNAs, which guide RNA 

modification enzymes to various classes of substrate RNA molecules.33–35 Secondary 

structure also plays a role in this targeting step as more highly structured transcripts are 

less accessible to miRNA binding.   
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Structure is important for regulation of translation. I discussed one example, the iron 

response element in which a specific secondary structure plays a role in PTGR by acting 

as a binding site for a repressive RBP. It is also possible for RNA secondary structures 

to directly repress translation by blocking the ribosome.36,37 

In addition to these well characterized examples, there are intriguing findings that hint at 

even more roles yet to be discovered for RNA secondary structure. Genome wide 

analysis of structural trends has revealed global secondary structure patterns across 

mRNAs. One observation is that regions of relatively low structure tend to be found at 

start and stop codons. It has been hypothesized that these structural patterns are 

involved in ribosome recruitment and release.38,39 

It has also been observed that the coding sequence of mRNAs has a different average 

structure than the 5' and 3' UTRs, however the relative differences in average structure 

between the regions differ between species. In two animal species, the UTRs tend to be 

more structured than the coding sequence while the opposite is found in the model plant 

Arabidopsis thaliana.38 It's not obvious what this trend reflects, however more detailed 

structure probing will likely reveal additional details. 

Another study, performed in the model plant Arabidopsis thaliana, investigated the 

genome wide relationship between secondary structure and total RNA expression. It 

found that mRNAs with extensive secondary structure were much less abundant that 

unstructured transcripts, suggesting that structure decreases abundance. The proposed 

mechanism for this decrease is that structured RNAs act as substrates for the RNA 

silencing machinery and are cleaved into smRNAs.40 
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It's unclear if this structure dependent repression is limited to plants or if it is a more 

general mechanism across organisms. It's also not clear whether the smRNAs 

themselves are functional or if they are simply byproducts of mRNA PTGR. 

Ultimately, it is clear that RNA secondary structure is pervasively important in many 

aspects of biology and new roles for it are likely to be discovered. This is especially 

exciting given the recent advances in technology for studying secondary structure. Next, 

I will discuss some of the techniques that have been developed historically and how they 

have been advanced and updated.  

 

 
1.3 Techniques for determining secondary structure 

 

Efforts to determine RNA secondary structure have been diverse and inventive, 

including both computational and empirical approaches. One of the earliest 

technologies, X-ray crystallography, is still in use today and can produce very high 

quality three-dimensional structures. It works by interpreting the diffraction pattern of X-

rays as they pass through crystallized RNA. Two groups were independently able to 

capture the structure of a yeast tRNA in 197416,41 using this technique. Since then, the 

structures of many important RNAs have been have been discovered using X-ray 

crystallography including the RNA components of the ribosome.42,43 As powerful as this 

technique is, it does have some caveats. Obtaining high quality crystals of RNA is not 

trivial. In particular, crystallizing RNAs that are long or unstructured is difficult and in 

some cases may not be possible. 
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Nuclear magnetic resonance (NMR) is another technique that employs electromagnetic 

radiation to probe the three-dimensional structure of RNA. Unlike X-ray crystallography, 

NMR does not require crystals and can inspect RNA in solution. However NMR requires 

large quantities of pure, homogeneous RNA and usually relies on synthetic RNAs or 

RNAs produced by cloning. Such molecules are not guaranteed to be identical to their in 

vivo counterparts.  

Both NMR and X-ray crystallography have been productive sources of RNA structures. 

As of this writing, the Protein Data Bank (PDB),44 a central resource for three-

dimensional structures of biomacromolecules, contains 472 RNA structures discovered 

through NMR and 652 from X-ray crystallography. It should be noted that this impressive 

collection represents decades of work. The oldest NMR entry is from 1991 while the first 

X-ray crystallography structure was deposited in 1978. This time scale illustrates the 

central drawback of these two powerful techniques: throughput. Both approaches 

produce highly informative three-dimensional structures, but each structure is a time and 

labor intensive enterprise.  

Technical improvement are constantly making both techniques faster and more 

tractable, but technological growth has been much more rapid in two other fields, namely 

computing and nucleotide sequencing. Increases in power and decreases in cost have 

led several groups to develop approaches for studying RNA structure using purely in 

silico methods or transcriptome scale methods which employ high throughput RNA 

sequencing.  

In silico methods use the nucleotide sequences of RNAs to predict thermodynamically 

favorable base pairings. The high-throughput sequencing methods generally adapt and 
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expand existing smaller scale techniques to work with sequencing technology as 

explained below. 

  

1.3.1 In silico techniques 

 

The simple rules that govern RNA folding have made it an appealing target for 

computational prediction. For a given RNA sequence, there is a finite set of valid 

secondary structures since only three types of base pairs are possible, the two Watson-

Crick pairings {A,U}, {C,G} and the RNA-specific pairing {G,U}. However, not all of these 

valid structures are equally likely. Each structure has a free energy which can be 

estimated using its unpaired bases. Higher free energies represent more unlikely 

structures, so many algorithms search for the valid structure with the minimum free 

energy (MFE). 

It has been shown that, in the most general case, finding the MFE structure from a 

sequence belongs to a class of problems known as NP-complete.45,46 It is widely 

suspected, although not proven, that such problems cannot be solved by polynomial 

time algorithms. In practical terms, this means that small increases in input sequence 

size lead to very large increases in computing time. Consequently, folding even small 

molecules in silico may be inherently intractable. 

However, algorithms have been developed to find MFE solutions in polynomial time with 

some simplifying assumptions.47,48 One major source of complexity is pseudoknots. 

Pseudoknots are structural features in which a series of continuous nucleotides 
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participates in two different stem loops which are not continuous. Algorithms which do 

not consider structures containing pseudoknots are able to calculate MFEs efficiently. 

Some programs are even able to consider structures containing pseudoknots, in a 

limited way, without losing polynomial time efficiency.46,49,50 

A general approach for computing structures has been to use dynamic programming to 

compute a table of pairwise bonding probabilities.47,48,51 Algorithms differ in the models 

they use for estimating the individual free energy of each pair and in the features they 

offer. Support has been added for circular RNAs52 and there are optimizations for 

parallel distributed computing.53,54 

 

1.3.2 Chemical probing 

 

The purpose of chemical probing techniques is to determine which of an RNA molecule's 

nucleotides are involved in pairing interactions and which ones are unpaired. This 

classification is useful when evaluating the output of in silico secondary structures. It can 

also be used to inform folding algorithms by imposing constraints about which bases are 

allowed to be paired. Additionally, the pairing state of a nucleotide likely affects its affinity 

for RNA-binding proteins.  

There are multiple reactive groups on both the nucleotide bases of RNA and on its sugar 

backbone. A wide range of chemical adducts has been explored for labeling them. One 

straightforward strategy is to selectively label unpaired nucleotides with a chemical that 

targets the atoms involved in pairing. The corresponding atoms on paired nucleotides 
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are inaccessible and are not labeled. There are several reagents useful for this purpose 

including dimethyl sulphate55, klethoxal and carbodiimide metho-p-toluene sulfonate.56 

Each prefers to label a different set of atoms and is useful for probing different 

nucleotides (Figure 1.1). 

Another approach involves acylating the 2' hydroxyl of the RNA's sugar backbone. The 

principle behind this strategy is not obvious. The reactive group being labeled is not 

directly protected by base pairing. Instead, the technique takes advantage of the fact 

that paired nucleotides are constrained in space in such a way that the negatively 

charged phosphodiester of the backbone is close the 2' hydroxyl protecting it from 

 

Figure 1.1: Examples of labeling strategies. Many chemical probes can label 

the reactive Nitrogens on the Watson Crick edge of the RNA. Each has a target 

preference. SHAPE reagents acylate the 2' hydroxyl of the backbone in a 

nucleotide agnostic way. RNAses cleave the backbone. Some prefer to cleave 

between nucleotides involved in base pairs. Others prefer unpaired regions. 
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acylating agents (Figure 1.1).57,58 

 

1.3.3 Enzymatic probing 

 

An alternate approach to chemical probing is to take advantage of ribonucleases that 

preferentially cut RNA depending on it secondary structure. Methods that use this 

strategy use one or more nucleases to partially digest the RNA and then inspect the 

resulting pattern of fragments using polyacrylamide gel electrophoresis and 

autoradiography. The resulting pattern of bands reveals details about the actives of the 

nucleases. Because the enzymes have structure preferences, secondary structure 

information can be inferred from the pattern of cuts.59–61 

Many structure specific nucleases prefer not just structural contexts but also specific 

sequences. While such enzymes have been successfully used to probe structure, they 

must be used in combination to effectively probe entire RNA molecules.61,62 Nucleases 

that do not have a sequence preference can be used to probe in a more unbiased way. 

S1 Nuclease, Mung Bean (MB) Nuclease, P1 Nuclease, and RNase I are all able to 

preferentially cut single stranded RNAs without sequence specificity.63,64 RNase V1, 

cleaves 4-6 nucleotide stretches of double-stranded RNAs without sequence bias.65,66 

Each of these enzymes, alone or with other reagents, has been used to learn the 

secondary structures of individual RNAs. 
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1.3.4 Adaptation of probing methods to high-throughput 

 

The increasing availability of high throughput sequencing has made it possible to adapt 

both chemical structure probing and enzymatic structure probing to transcriptome-wide 

studies. I will discuss four current methods in more detail in the next chapter. The 

underlying idea is that a pool of RNAs from the full transcriptome is treated with one of 

the chemical or enzymatic probe discussed above prior to library preparation (Figure 

1.2). 

The chemical probes affect this step by blocking reverse transcriptase and casing it to 

fall off. This results in reads that end abruptly at the position occupied by the probe. 

Because all of the chemical probes discussed prefer unpaired nucleotides, positions 

where multiple reads end can be considered to be unpaired. There are some caveats to 

these approaches, which I will discuss, and it is important to choose an appropriate 

control as RT stops can be difficult to interpret. 

Enzymatic probing approaches use RNA cleavage to reveal structure in high throughput 

using two libraries, one treated with an enzyme that prefers to cleave paired nucleotides 

and another treated with an enzyme that prefers unpaired bases.  

One strategy is to generate nicks in the RNA with enzymes. 5' sequencing adapters can 

be ligated onto these nicks during library preparation. After sequencing, the ligation 

sites, and thus the nicks, are represented by the 5' read ends. If a given position was 

more commonly nicked by an RNAse that prefers paired or unpaired nucleotides, that 

position's structure can be inferred. 
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Alternately, it is possible to more fully digest away either dsRNA or ssRNA using similar 

reagents but different treatment conditions. The surviving regions of RNA can then be 

subjected to library preparation and sequencing. Under this strategy, positions that are 

more represented in the library depleted for ssRNAs can be considered to come from 

double stranded regions. Similarly, positions that are more represented in the library 

depleted for dsRNAs can be considered to come from single stranded regions. 

 

 

1.4 Small RNAs 

As mentioned above, there are many known mechanisms of post-transcriptional gene 

regulation (PTGR), and most likely, more will be discovered. In general, PTGR can affect 

the stability, translation, and localization of a transcript. One major category of PTGR is 

RNA silencing mediated by various classes of small RNAs (smRNAs). 

 

 

Figure 1.2: General Strategy for determining RNA secondary structure by high throughput 

sequencing. First RNA is treated with a reagent that is sensitive to structure and visible by 

sequencing. Treated RNAs are subjected to library preparation and sequencing 
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1.4.1 Classes of Small RNAs and their biogenesis 

 

Two major classes of smRNAs important for RNA silencing are siRNAs and miRNAs and 

they differ in their biogenesis. miRNAs begin as Pol II transcripts. They are capped and 

polyadenylated. In some cases they have introns which are spliced out. This transcript, 

the primary miRNA (pri-miRNA) folds back on it self creating a stem loop structure. An 

endonuclease makes a double stranded cut in the stem, typically removing the 5' and 3' 

end of the transcript and leaving the precursor miRNA (pre-miRNA)67,68  although some 

pri-miRNAs are initially cut to remove the loop.69 Alternatively, pre-miRNAs may begin as 

introns which are spliced directly out of genes without an initial cleavage step. In plants, 

the loop is sometimes removed first resulting in a pre-miRNA with intact 5' and 3' ends. 

Finally one or more double stranded cuts are made in the stem resulting in a duplex of 

smRNAs. The two strands dissociate and one or both of them are mature miRNAs. 

These mature miRNAs are loaded onto ARGONAUT proteins and, with other factors, 

they form RNA-induced silencing complexes (RISCs). Some of the details differ between 

organisms. For example, animal pri-miRNAs are cleaved by the enzyme DROSHA and 

pre-miRNAs are cleaved by DICER. In plants both cleavage steps are done by a DICER 

ortholog. 

There are a variety of mechanisms that produce siRNAs each involving a double 

stranded RNA precursor.70 Once type of precursor is created by two promoters facing 

eachother in close proximity causing transcription of two complementary transcripts. 

Another mechanism relies on a class of enzymes called RNA dependent RNA 

polymerases (RDRs). These enzymes use an RNA molecule as a template to create its 
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reverse complement resulting in a double stranded RNA. In some mechanisms, this 

RNA molecule is long and the siRNAs are created through cleavage, however some 

RDRs are able to create siRNAs of the correct length simply by arresting 

polymerization.71–73 

Both miRNAs and siRNAs act as specificity factors, using base pairing interactions with 

target RNAs to guide effector complexes to silence specific transcripts. miRNAs are ~22-

nt RNAs. Along with ARGONAUT proteins and other factors they form RNA-induced 

silencing complexes (RISCs). These complexes use their miRNAs to detect fully or 

partially complementary transcripts and silence them.74–76  

 

1.4.2 Mechanisms of smRNA-mediated RNA silencing 

In animals, miRNAs base pair imperfectly with their targets, often in the 3' UTR of the 

transcript. They regulate their targets by inhibiting translation.76 In some cases, this 

translational silencing seems not to affect the abundance of the target74,75,77,78 although 

there is evidence that in some cases targeting leads to transcript degradation.79–81  

In plants, The primary mechanism of miRNAs is to direct endonucleases to cleave the 

target site. This results in a 5' cleavage product without a polyA tail and a 3' product 

without a cap, both of which are quickly degraded.82–85 The full range of complexity of 

miRNA silencing mechanisms is outside the scope of this dissertation, however it is 

important to note that there are multiple related mechanisms and many are current 

topics of research. 
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Similar to miRNAs, siRNAs incorporate into RISC complexes and effect PTGS, however 

a more diverse set of mechanisms has been described for them. Multiple classes of 

siRNAs found in Arabidopsis will be discussed in more detail in Chapter 5.  

 

 

1.4.4 Methods for identifying targets for smRNA-mediated RNA silencing 

 

Because smRNAs identify their targets through base pairing interactions, the sequence 

of the target region must be partially or fully complementary to the sequence of the 

smRNA. This relationship has made it possible to predict targeting interactions in silico. 

Much of this work has focused on predicting animal miRNA targets. Algorithms 

specialized for this application often take into account the fact that such miRNAs have a 

“seed” region, nucleotides 2-8 from the 5' end of the miRNA, which must be highly 

complementary to the target site.  

A wide variety of algorithms has been used to search for matches including deterministic 

methods including Support Vector Machines86, Hidden Markov Models,87 boosted 

genetic programming algorithms.88  In general, they then evaluate the predicted 

thermodynamic stability of the full match.87,89–93 In addition to the match quality, some 

algorithms use additional information such as the thermodynamically predicted 

secondary structure of the target site94 and its evolutionary conservation.95 

In contrast to animal miRNAs, the miRNAs found in plants are thought to require near 

perfect sequence matches to their targets. Consequently, approaches for detecting such 
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targets typically do not take into account any particular sub-sequence of the miRNA. 

Plant miRNA have been identified in silico by more general matching algorithms such as 

matching with regular expressions96,97 and BLAST.98 Computational techniques have 

been developed specifically to detect plant miRNAs and some are available as online 

tools.99,100  

Although these were developed with miRNAs in mind, it is reasonable to expect them to 

detect the targets of plant siRNAs as well. Some siRNA producing transcripts are targets 

of their own siRNAs suggesting that siRNA target matching in plants is as precise as 

miRNA matching. In a later chapter, I will discuss using the target prediction software 

psRNATarget100 to detect targets of plant siRNAs. 

 

CHAPTER 2: An Integrated Resource for Secondary Structure Data 

 

This section was adapted from: 

Berkowitz N.D., Silverman I.M., Childress D.M., Kazan H., Wang L.S., et al. A 

comprehensive database of high-throughput sequencing-based RNA secondary 

structure probing data (Structure Surfer). BMC Bioinformatics. (2016) May 17;17(1):215. 

 

Abstract  

RNA molecules fold into complex three-dimensional shapes, guided by the pattern of 

hydrogen bonding between nucleotides. This pattern of base pairing, known as RNA 

secondary structure, is critical to their cellular function. Recently several diverse 
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methods have been developed to assay RNA secondary structure on a transcriptome-

wide scale using high-throughput sequencing. Each approach has its own strengths and 

caveats, however there is no widely available tool for visualizing and comparing the 

results from these varied methods. To address this, I developed Structure Surfer, a 

database and visualization tool for inspecting RNA secondary structure in six 

transcriptome-wide data sets from human and mouse 

(http://tesla.pcbi.upenn.edu/structuresurfer/). Users have the ability to query individual 

loci as well as detect trends across multiple sites. Here, I describe the included data and 

illustrate its function with known structural elements and example use cases in which 

combined data is used to detect structural trends.  

 

 

2.1 Background 

 

RNA molecules serve as both conveyors of genetic information and as molecular 

machines with specific structural and catalytic functions in the cell. The function and 

regulation of every RNA molecule depends on its specific secondary structure, the 

intricate pattern of hydrogen bonds between complementary ribonucleotides that forms 

in its specific cellular environment. For instance, the ribosome, the central enzymatic 

complex in protein translation, is the classic example of an RNA-based machine, and 

thus the structure of its RNA subunits (ribosomal RNAs (rRNAs)) has been carefully 

dissected using detailed analyses. However, thousands of other structural RNA 

elements and catalytic RNAs exist in the cell, and the resources required to study them 
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in more detail are mostly unavailable for large-scale use by the broader research 

community.  

Advances in high-throughput sequencing technologies have allowed a significant 

increase in technical development of methods for studying RNA secondary structure on 

a transcriptome-wide scale. This has led to a diverse collection of sequencing-based 

approaches available for interrogating RNA secondary structure, and thus there are a 

number of large-scale data sets that are currently publicly available.39,101–103 There are 

important methodological differences between these high-throughput structure-probing 

techniques, but the unifying principle is that they involve treating RNA samples with a 

reagent that selectively reacts with nucleotides depending on their base pairing status 

and then interrogating the treated RNA by high-throughput sequencing. I will discuss all 

of the methods that I curated for this project. In summary, it includes two chemical data 

from two chemical probing approaches and two enzymatic probing approaches. The 

enzymatic approaches both involve proteins that cleave RNA. 

There are two methods that take advantage of ribonuclease (RNase)-mediated cleavage 

of RNA bases that are either double- or single-stranded (ds- and ssRNase, respectively). 

The first example is Parallel Analysis of RNA Structures (PARS), which requires two 

high-throughput sequencing libraries per sample. One library is treated with the 

ssRNase-specific RNase S1, while the other involves cleavage by the dsRNase-specific 

RNase V1. Both RNase treatments are titrated for single hit kinetics, meaning that each 

RNA molecule is cleaved only once by the nuclease used for treatment and thus it is not 

fully digested. The resulting singly cleaved RNA ends are immediately used as the 

substrate for ligation of a 5’ adapter molecule as the first step in high-throughput 

sequencing library preparation. Sequencing libraries prepared in this way produce reads 
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whose 5' ends directly correspond to the site of nuclease cleavage. The structure of an 

RNA molecule can then be inferred from the relative number of RNase S1 (unpaired) 

and V1 (paired) cuts at each nucleotide position39.  

Similar reagents are used in ds/ssRNA sequencing (ds/ssRNA-seq) but to a different 

effect. As with PARS, each RNA sample is split into two aliquots, which are then treated 

with either an ssRNase (RNaseONE) or dsRNase (RNase V1). However, instead of 

utilizing single hit kinetics on the RNA samples, the nucleases are allowed to proceed to 

full digestion. The resulting RNase-resistant regions from each treatment are 

sequenced, and a structure score is then computed for each detectable nucleotide 

position by directly comparing the sequencing read coverage between the dsRNA- and 

ssRNA-seq libraries40. 

Two other approaches whose data I curated (see Methods) have combined chemical 

probing of RNA secondary structure with high-throughput sequencing technologies. For 

these approaches, unpaired RNA bases are labeled with a small molecule that inhibits 

elongation by reverse transcriptase (RT) used for cDNA synthesis during sequencing 

library preparation. This block in RT elongation results in termination of the cDNA 

molecules at the sites of these modified single-stranded nucleotides. Therefore, the 

resulting sequencing reads have 5' ends at the site that was labeled by addition of the 

chemical adducts.  

DMS-seq is named for the labeling reagent that it employs, dimethyl sulfate (DMS). This 

small molecule labels unpaired adenosines and cytosines, but does not react efficiently 

with these nucleotides when they are base paired with another nucleotide104,105. Unlike 

the nuclease-based methods, DMS-seq does not include a reagent that specifically 
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labels paired nucleotides. Instead, it directly assesses unpaired bases by measuring the 

DMS reactivity of nucleotides in natively folded RNA molecules compared to a control 

library where purified, denatured RNAs are treated with DMS and used as substrates in 

sequencing library preparation101. Double-stranded RNA regions are then inferred based 

on absence of DMS-seq signal at those nucleotides.  

The other chemical-based structure probing method is selective 2′-hydroxyl acylation 

analyzed by primer extension sequencing (SHAPE-seq)106–108, which uses any of several 

reagents that selectively label the 2' hydroxyl of unpaired nucleotides. Like DMS, this 

label causes RT to terminate due to the inhibition of its ability to elongate, which 

ultimately results in sequencing reads whose 5’ terminal nucleotide corresponds to the 

labeled position. The 5’ end read depth of each position in the treated library can then be 

compared to the corresponding read depth in an untreated DMSO control. This 

approach has recently been updated to allow higher resolution of RNA secondary 

structure, especially in mammalian transcriptomes. Specifically, the recently developed 

in vivo click SHAPE (icSHAPE) added an additional improvement to this general 

approach, in which the 2’ hydroxyl-labeling reagent also contains a biotin moiety, 

allowing enrichment of labeled RNA fragments in the final sequencing libraries.102 

Although these techniques have been used to generate large-scale, broadly useful RNA 

structure probing data, there is no available resource that provides convenient access to 

these important data sets. Furthermore, there is no easy way to directly compare the 

results from these disparate approaches. To address this gap, I developed Structure 

Surfer, a database for exploring and comparing data generated by these new high-

throughput structure-probing techniques (http://tesla.pcbi.upenn.edu/structuresurfer/). To 
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do this, I have curated a comprehensive database of RNA secondary structure scores 

produced by the described experimental approaches. Structure Surfer allows users to 

query individual genomic loci of interest and visualize the local structural environment to 

directly compare the various methods. Additionally, I have included a tool for 

aggregating data across multiple genomic loci that allows users to query transcriptome-

wide structural trends in a collection of regions of interest (e.g. all transcript start 

codons). In total, Structure Surfer provides an important and easy-to-use resource for 

querying and comparing the high-throughput RNA secondary structure probing data that 

is available for mammalian transcriptomes.  

 

2.2 Methods 

ds/ssRNA-seq 

 

HEK293T cells were seeded in 15 cm standard Corning tissue culture treated culture 

dishes (Sigma, St Louis, MO), grown to 90% confluence (approximately 18 million cells) 

in DMEM media (Life Technologies, San Diego, CA) supplemented with L-glutamine, 4.5 

g/L D-glucose, 10% fetal bovine serum (FBS (Atlanta Biologics, Atlanta, GA)), and 

Pen/Strep (Fisher Scientific, Waltham, MA).  

RNA was isolated using the Qiagen miRNeasy RNA isolation kit following the 

manufacturer’s protocol (Qiagen, Valencia, CA).  Two aliquots of 50 mg were used to 

make two replicates each of dsRNA-seq and ssRNA-Seq libraries. These two types of 

structure-specific libraries were constructed as previously described38,40.  
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Data Resources  

 

I curated RNA secondary structure data from two published studies of the human 

transcriptome: DMS-Seq101 and PARS103, as well as previously unpublished structure 

scores from our ds/ssRNA-Seq data set for human HEK293T cells. Additionally, I 

compiled the scores from both in vitro and in vivo icSHAPE experiments in mouse102. 

The icSHAPE scores were reformatted and loaded directly into a mySQL database. For 

the other methods, I obtained the raw high-throughput sequencing reads and calculated 

the structure scores similarly to the published method specific to each one. All scoring 

functions are summarized below.  

 

Genome Coverage 

 

For DMS-seq, PARS, and ds/ssRNA-seq data sets, raw reads were trimmed using 

cutadapt109. This step removes any contaminating 3’ adapter sequences caused by 

inserts shorter than the sequencing read length. Trimmed and untrimmed reads were 

combined and mapped to the human genome using TopHat110. Reads that could not be 

trimmed or mapped were discarded. I allowed up to two mismatches per read and a 

maximum edit distance of two. I discarded reads that mapped to more than five 

locations. For DMS-Seq and PARS data, we computed the read coverage at each 
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position in the genome with bedtools111 using only the 5' most nucleotide of each read. 

When calculating coverage for ds/ssRNA-seq, the entire read was used.  

 

DMS-seq Scores 

 

DMS labeling of a nucleotide causes RT to stall during the cDNA synthesis step of RNA-

seq library construction. Unstructured nucleotides, those that are not involved in base 

pairing, are more highly reactive with DMS and thus they are more likely to be the site of 

such a stall. Thus, the resulting RNA-seq reads from this type of high-throughput 

structure probing technique have 5' ends corresponding to the reactive, unpaired 

position. However, DMS labeling is not the only possible explanation for positions with a 

high tendency to cause RT stalls. For this reason, DMS-seq scores are expressed as 

nucleotide reactivity compared to a denatured control. The signal at each position is 

calculated based on the normalized number of 5' read ends mapping to that position in 

the native structure library compared to the control101.  

 

 

The reactivity R for position i is computed by first dividing the 5' read end coverage at 

that position, Di by the maximum 5' read end coverage in the library, Dmax. The 

resulting ratio is divided by Ci, the 5’ end read coverage at position i in the denatured 

control library normalized to the maximum 5’ end read coverage of the control library, 

Ri =
Di /Dmax

Ci /Cmax
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Cmax. This reactivity score represents the degree of over-representation of RT stops in 

the DMS treated library compared with the control. High scores indicate positions where 

RT stops were frequent suggesting an unpaired nucleotide labeled by DMS.  

 

icSHAPE Scores 

 

As with DMS-seq, icSHAPE scoring reflects the higher reactivity of unpaired nucleotides 

compared to nucleotides involved in pairing. Reactivity is calculated from the count of 5' 

read ends covering each position. These counts are normalized to counts from a no-

reagent background library and adjusted according to a background base density102.  

 

 

 

Reactivity R for position i is based on the 5' read end coverage at that position, Di, minus 

the coverage in the DMSO treated control library, Ci. The background base density 

profile for each transcript, B, is defined as the sequencing depth of each base in the 

DMSO library.  

 

PARS Scores 

 

Ri = Di −Ci( ) / B( )
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PARS scores reflect the differential cleavage of paired and unpaired regions to 

ribonucleases. Unpaired regions are more cleaved by RNase S1 while paired regions 

are more cleaved by RNase V1. Both enzymes create RNA fragments with 5' phosphate 

groups by cleaving in their respective preferred regions. These ends are directly ligated 

onto sequencing primers. After cDNA synthesis and sequencing, each read has a 5' end 

corresponding to a cleavage site. Scores were calculated from the count of 5' read ends 

covering each position in the two nuclease treated libraries. Each score is based on the 

log ratio of the two coverage scores. The generalized log ratio is calculated by adding 

one count per position to both the numerator and the denominator before calculating the 

log ratio. This allows scoring of positions with positive counts in one of the two input 

libraries but no counts in the other library. Such positions are of interest because there is 

evidence that they are in a particular structural state, but the standard log ratio for them 

is undefined. A 5' nucleotide (nt) rolling average is applied for smoothing. Positions with 

no coverage in either library were omitted103.  

PARS structure score S for position i is the generalized log ratio of the normalized 5' end 

coverage for that position in the RNase V1 library and the corresponding coverage in the 

RNase S1 library. For each position, this value is calculated across the surrounding 5 nt 

window.  
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Ds/ssRNA-seq scores  

 

Unlike scores from the other methods, ds/ssRNA-seq scoring takes into account all 

positions from each read rather than the 5' end coverage only. It employs similar 

reagents to PARS, but uses a longer enzyme treatment resulting in more complete 

digestion of each enzyme's preferred structure type. After cDNA synthesis and 

sequencing, reads represent regions that were protected from structure specific 

digestion. For each position the score is the generalized log ratio of the normalized 

counts in the two libraries38.  

 

 

Visualization 

 

The database’s plotting tool is implemented using the Python package PyGal. For 

plotting purposes, scores are scaled and re-centered to reveal local structural patterns 

and to make the data sets visually comparable. For the same reason, DMS and 

icSHAPE scores, which represent nucleotide reactivity as opposed to degree of 

structure, are inverted when displayed such that high scores indicate evidence of paired 

nucleotides in all data sets. Raw scores are available for download alongside the plots.  

 

Si = log2 ONEi +1/V1i +1( )
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Availability of data and materials 

 

All of the ssRNA- and dsRNA-seq libraries included in this study were made by my 

colleague, Ian Silverman, in Brian Gregory’s lab. These data, from HEK293T cells, were 

deposited in GEO under the accession GSE72681. The remaining data were obtained 

from published studies.  PARS, DMS-seq, and icSHAPE data were downloaded from 

GEO using the accession numbers GSE50676, GSE45803, and GSE60034, 

respectively. The complete Structure Surfer database is available as a MySQL dump file 

at PennBox, https://upenn.app.box.com/s/1kj2f1w994sp3jmaakqhy9cw2w11vajk. The 

Python search tool and database schema can be found at GitHub, 

https://github.com/nberkow/StructureSurfer. The structure score profiles for ~100 RBPs 

(as shown in Figure 2.5) calculated by Structure Surfer are available for download at 

http://tesla.pcbi.upenn.edu/structuresurfer. No login is required to access these 

resources.  

 

2.3 Utility And Discussion  

Database content 

 

The database contains structure scores from four methods including six individual 

experiments across human and mouse. The score coverage varies greatly between 

methods. Despite having the lowest sequencing depth, the ds/ssRNA-Seq experiment 

produces the greatest score density. However this is not surprising given that the 
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method uses all nucleotides covered by each read to generate scores while all of the 

other methods use only a single nucleotide per read when calculating scores. The most 

sparse scores come from the human PARS data set which covers only ~1 megabase of 

the transcriptome. 
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Figure 2.1: Diagram of the Structure Surfer database. Four different 

experiment types were acquired from GEO. Each one was analyzed with one of 

the technique specific scoring methods summarized above. The scores were 

loaded into the database and can be downloaded directly or can be visualized 

using a web tool. The visualization scales and centers the scores and ensures 

that high scores indicate more nucleotide pairing. 
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PARS, DMS-Seq, and icSHAPE all use a single base pair per read to calculate scores 

but the libraries used in the DMS experiment were sequenced to a higher depth which 

likely explains its greater score density (Table S2). The two icSHAPE experiments, 

which were sequenced to the highest depth of all the data sets included, produced an 

intermediate number of scored positions indicating that each scored position represents 

a greater number of reads on average. Each of the different methodologies produces 

scores that follow a distinct distribution (Figure 2.2) making it difficult to draw direct 

comparisons between them. These differences are likely due in part to differences in 

reagent kinetics. PARS and ds/ssRNA-seq, for example, employ similar reagents but 

PARS digests RNA very mildly resulting in single hit kinetics while ds/ssRNA-seq 

involves digesting regions of RNA to near completion. Other differences may arise from 

normalization strategy, as with the two nucleotide labeling techniques. DMS uses, as a 

normalization control, a denatured RNA sample, which is more highly reactive to DMS. 

In contrast, icSHAPE uses an RNA sample treated with solvent only, which reflects 

absence of icSHAPE reactivity. Structure Surfer addresses this by allowing users to 

focus on local structure patterns and transcriptome-wide structure trends. 
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Structure examples 

Figure 2.2: Score distributions for the four data types. Raw scores are given on the x axis, the y axis 

represents the number of times each score appears in the database for a)  PARS b) ds/ssRNA-Seq c) 

icSHAPE and d) DMS. 
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In order to develop our visualization of RNA secondary structure scores, we inspected a 

 

Figure 2.3: icSHAPE score profiles for the iron response element (IRE) hairpins of murine Ftl1 (a) 

and Fth1 (c) visualized using Structure Surfer’s standardized data output. The Ftl1 IRE is located at 

position 76 to 110 in the transcript and, in the genome, is located on chromosome seven from position 

45459777 to 45459811 on the non-reference strand. Fth1’s IRE is located at position 83 to 117 in 

transcript variant 1. In the genome its coordinates are from 9982728 to 9982762 on the reference 

strand of chromosome 19. In vitro reactivity scores from the database are superimposed on in silico 

predicted structures for Ftl1 (b) and Fth1 (d) using SAVoR [4]. Red indicates positions with higher 

reactivity, showing evidence of low secondary structure. Positions colored in yellow have lower 

reactivity and are more likely paired 
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well-characterized class of highly structured elements, the iron response element (IRE). 

IREs are short stem-loops that act as binding sites for the RNA-binding protein (RBP) 

IRE-BP. They are found within the 5' untranslated regions (UTRs) of several mRNAs 

including two that encode the heavy and light chains of Ferritin in mouse, Fth1 and Ftl1, 

respectively. We visualized these two specific IREs using the database's icSHAPE 

structure scores (Figures 2.3A and C). In both structure score profiles, we see a 5 

nucleotide stretch of low structure scores indicating an unpaired region. Indeed, each of 

these corresponds to the position of the unstructured loop region of the IRE. Also as 

expected, the structured stem region of the IRE has comparatively high scores. The 5' 

and 3' ends of the feature, which are not predicted to participate in the stem, have 

intermediate scores (Figures 2.3A and C). 

 

In both score profiles, there are several single nucleotide positions along the stem region 

with  

sharply low structure scores. We used the RNA annotation tool SAVoR112 to 

superimpose icSHAPE reactivity scores onto RNAfold structures for the two loops 

(Figures 2.3B and D). Because Ftl1 is on the negative strand with respect to the 

genome, its score were reversed in order before they were superimposed. Strikingly, the 

two most reactive positions outside of the loop region in Ftl1 correspond to single 

nucleotide bulges in the stem at positions 5 and 11. This is not as clear in Fth1. While 

bulges in the predicted structure do generally correspond to peaks, as in the highly 

reactive bulge at position 11, there are two highly reactive nucleotides at positions 4 and 

5, which are predicted to be paired. This provides evidence for the importance of 
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structure probing techniques to define regions that differ in structure in vivo and in silico. 

One explanation for the differences is that in silico techniques do not always generate 

true RNA secondary structure. This may be a limitation of the algorithm used or it may 

be the result of nucleotide modification affecting structure in a way not reflected by the 

input sequence. For icSHAPE in particular, very high structure scores sometimes 

represent bases that are highly constrained, but in a way that makes them more rather 

than less reactive. More detailed experiments are needed to understand the exact 

source of disagreements between annotated structures and icSHAPE scores. Structure 

Surfer allows such differences to be detected easily and visually.  

The human homologs of the mouse IRE features have no scores in any of the four 

human data sets, which illustrates a key issue to consider when dealing with RNA 

secondary structure. Structure measurement depends on RNA expression, sequencing 

depth, and technique specific biases. Many regions of potential interest have no scores 

or low score density. Fortunately, it is still possible to interrogate regions with low score 

density to detect overarching structure trends using a data aggregation approach.  

Structure Surfer's interface provides such an approach by allowing users to input 

multiple regions aggregated into a single bed file and find the average structure score for 

all of the incorporated data sets across this collection of regions. This is useful for 

investigating repeated structural patterns across functionally related regions. For 

example, it has been noted that there are local decreases in RNA secondary structure at 

the start and stop of the coding sequence (CDS)38,40,103,113. To test Structure Surfer's 

aggregation mode, we queried the database with a set of sites containing every 

annotated CDS start codon in the human genome centered in a window of 9 nucleotides 
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up- and downstream of these elements. Similarly, another file was entered using every 

CDS stop codon and their 9 nt up- and downstream surrounding sequences. When 

averaged across all of the input features, every human data set shows a dip in 

secondary structure around both the CDS start and stop codons (Figures 2.4A and B, 

respectively).  

 

 

 

Figure 2.4: a-b Structure scores from the Structure Surfer database aggregated across all annotated human 

start codons (a) and stop codons (b). The three nucleotides of the start (ATG) and stop codons (e.g. TAA) 

occupy nucleotide positions 9–11 on each of the plots respectively. The score at each position is calculated 

as the average score across all nucleotides at that position relative to the codon. At both starts and stops, 

we note a dip in secondary structure consistent across experiments indicating that these positions, on 

average, have lower structure than the nucleotides surrounding them 
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Individual CDS start and stop sites may have very low score densities, but taken 

together, their average scores indicate broad agreement between the data sets and 

agreement with this previously described structural trend in numerous eukaryotic 

organisms38,40,103,113. This example shows how Structure Surfer can be used to reveal 

trends in RNA secondary structure across biologically related regions.  

 

Example use case: RNA-binding protein interaction motifs 

 

As an example application of Structure Surfer, we also used it to query the structural 

patterns at and around RBP interacting motif sites. Many RBPs bind their target 

transcripts according to sequence specificity, however it is likely that the structural 

environment around these sequences is also important. A recent high-throughput study 

applied the RNAcompete protocol to identify sequence motifs for 244 RBPs across 

multiple organisms11. We selected the RBPs from human and mouse that were 

interrogated by this study, and scanned both genomes for matches to RNAcompete-

derived motifs. For each selected RBP, we computed an average structure score across 

all matching sites (all data from these analyses can be downloaded from 

http://tesla.pcbi.upenn.edu/structuresurfer/RBP_motif_structure.pdf).  

We found several examples of RBPs whose predicted binding sites show a consensus 

structural environment across experiments. For example, motif matches for cytoplasmic 

polyadenine (polyA) binding protein-5 (PABPC5) show a strong unstructured trend when 

structure scores of all sites are averaged (Figure 2.5A). We observe the same result 
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when we search for PABPC5 sites in the mouse genome and average their icSHAPE 

scores (Figure 2.5B). The opposite trend is found for motifs recognized by SNRPA, a 

component of the splicing machinery. All experiments report a local peak in structure at 

SNRPA motif sites in both human and mouse (Figures 2.5C and D).  
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Figure 2.5: Examples of structure score aggregation using the data from Structure Surfer across 

RBP motif match sites for three RBPs, PABPC5 (a-b), SNRPA (c-d), and SRSF7 (e-f). Human 

structure scores are aggregated at match sites in the human exome (a, c, and e), and mouse 
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scores are aggregated at match sites in the mouse exome (b, d, and f). In all examples, the RBP 

interacting motif sequence is a heptamer occupying nucleotide positions 21–27. The score at each 

position is calculated as the average score across all nucleotides at that position relative to the 

RBP motif. PABPC5 shows a consistent dip in secondary indicating that sites matching its motif 

have, on average, less secondary structure than surrounding nucleotides. The SNRPA motif 

shows the opposite trend. Specifically, the average structure scores at sites containing this motif 

are higher than the surrounding nucleotides indicating that these sites tend to be double 

stranded. Sites for SRSF7 show a more complex pattern in which the different experiments do not 

form a consensus. PARS demonstrates evidence for a peak in average secondary structure at 

SRSF7 motifs, while ds/ssRNA-seq and DMS display evidence for a dip in average secondary 

structure. The icSHAPE experiments both show a region where some positions appear to be 

involved in base pairing and others appear unpaired 

 

Unlike the examples above where we consistently find the same pattern across the 

different structure data sets, we also observe sites where there is not a consensus. For 

instance, the collection of predicted interaction sites of SRSF7 appear to be structured 

according to PARS, but unstructured according to DMS and ds/ssRNA-seq (Figure 

2.5E). Interestingly, the icSHAPE experiments report an average structural environment 

with some highly reactive positions and some positions that appear protected (Figure 

2.5F). One possible explanation for the icSHAPE result is that highly reactive sites 

compete for reagent with their slightly less reactive neighbors even if the entire region is 

unstructured. If this is the case it may also explain the difference in signal between the 

other methods. While it is difficult to interpret non-consensus sites, they may provide 
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some insight into the types of features that are differentially detectable between the four 

methods.  

 

2.4 Summary 

 

Structure Surfer is a database of RNA secondary structure information compiled from six 

different experiments across four distinct methods from human and mouse. The web 

interface allows users to visualize secondary structure patterns at any genomic region of 

interest. For instance, we visualized a known feature type, the IREs of murine Ferritin 

heavy and light chain mRNAs, and revealed a pattern of structure scores that match the 

in silico RNAfold-predicted secondary structure for these elements. When the scores 

provided by the structure probing methods are sparse, we find that a data aggregation 

approach reveals broad overall structural trends in a collection of transcript regions (i.e. 

the area around all transcript start codons). Therefore, we have also implemented a data 

aggregation option in the web interface to interrogate files containing a collection of such 

regions. Using this interface, we demonstrate the ability to visualize a known structural 

trend, specifically the dips in secondary structure at translation start and stop sites. Also 

using aggregation, we see intriguing patterns of secondary structure at predicted binding 

sites of specific RBPs. However, these are only two of the many possible use cases of 

Structure Surfer. Specifically, we hypothesize that there will be structural patterns 

corresponding to nuances in splicing, translation, and many other important processes.  
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CHAPTER 3. High throughput probing of Arabidopsis microRNA precursors 

 

ABSTRACT 

microRNAs (miRNAs) are small non-coding RNAs that function in post-transcriptional 

gene regulation. In plants, they are transcribed by RNA Polymerase II from their own 

genes as longer RNAs with regions of self-complementarity that fold into stem loop 

structures, which are called primary miRNA transcripts. The stem region of these stem 

loops contains the microRNA sequence and is recognized and subsequently cleaved by 

the RNase III DICER-LIKE1, thereby releasing the mature miRNA. Thus, the secondary 

structure of the hairpin is important for this cleavage step. Secondary structures can be 

determined in silico based on nucleotide complementarity and there are useful 

computational tools, however the computed structures must be validated. We used high 
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throughput enzymatic probing to validate annotated secondary structures of miRNA 

precursor transcripts. 

 

3.1 Introduction 

In plants and animals, microRNAs (miRNAs) play an important role in post-

transcriptional gene regulation. These short non-coding RNAs bind to target transcripts 

using nucleotide complementarity and negatively regulate them, either by targeting them 

for cleavage or by inhibiting their translation.114–117 

The biogenesis of miRNAs has multiple steps and some of them differ between animals 

and plants. Plant miRNAs, as well as many animal miRNAs, are initially transcribed by 

RNA Polymerase II (Pol II) into primary miRNAs (pri-miRNAs).118,119 Like mRNAs and 

other Poll II transcribed RNAs, these transcripts are capped119 and polyadenylated. 

Some have introns that are spliced out.120,121 Each one has regions of imperfect self-

complementarity that pair with each other and cause it to fold into a characteristic hairpin 

loop, a secondary structure that is critical for its processing. The mature miRNA is 

processed out of the hairpin's stem in a series of endonuclease cuts. 

In animals, two distinct nucleases are required. Drosha makes two cuts at the base of 

the stem, removing the 5' and 3' ends of the transcript.122 The resulting precursor miRNA 

(pre-miRNA) is then exported from the nucleus. In the cytosol, Dicer, another nuclease, 

makes one or more pairs of cuts on the opposite end, removing the loop and leaving the 

mature miRNA and its reverse complement.123–126 A similar pattern of cuts occurs in 

plants, but they are performed by a single Dicer-like molecule (DCL1) and both steps 
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take place in the nucleus.117,120,127,128 Interestingly, in plants the two processing steps can 

happen in either order depending on the specific miRNA, meaning that some miRNAs 

are processed base-to-loop while others are processed loop-to-base.69 

The sequence properties of miRNAs have made them an appealing topic for 

computational studies. In the genome, miRNAs appear as imperfect inverted repeats 

which makes it possible to discover them by searching for such patterns.96,129,130 These 

putative miRNAs can then be validated experimentally. In addition to the miRNAs 

themselves, their regulatory targets have also been predicted in silico by taking 

advantage of the near perfect complementarity that plant miRNAs have with their target 

sites96,97,100 as well as empirically through miRNA overexpression.131 

Algorithms have been developed to predict the secondary structure of RNAs using their 

sequences by determining the minimum free energy (MFE) structure.132–134 This method 

considers possible secondary structures based on nucleotide complementarity and 

chooses the most likely conformation by calculating the free energy of the unpaired 

nucleotides, favoring solutions with more nucleotide pairing. 

While miRNAs themselves are short and unstructured, both pri-miRNAs and pre-

miRNAs have secondary structures important for their processing. Many such structures 

are curated in miRBase, the primary source for miRNA annotation.135–138 This database 

contains many high confidence entries, however new ones are deposited frequently and 

some have yet to be validated29. For some entries, the annotated structure has been 

experimentally determined however in many cases it is calculated by MFE. 
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Chemical and enzymatic probing have revealed differences between several predicted 

human pre-miRNAs structures and their experimentally determined structures.139 This 

finding suggests that thermodynamic optimality is not sufficient to fully explain human 

pre-miRNA folding. In this study we use high-throughput enzymatic probing to 

characterize the secondary structure at miRBase annotated miRNAs. We investigate 

whether plant miRNAs, which are different from mammalian miRNAs in their biogenesis, 

arise from precursors that are also folded in ways that do not match their predicted 

structures. Additionally we propose a method for updating structure annotations using 

high throughput structure-probing data. 

 

3.2 Results 

We obtained RNA Sequencing (RNA-Seq) reads from two nuclease probing libraries. 

These libraries were prepared by Shawn Foley in the Brian Gregory’s lab as controls for 

previously published experiment.113 In each one, total RNA from the purified nuclei of 

Arabidopsis seedlings had been treated with a nuclease sensitive to RNA secondary 

structure. One sample was treated with RNase ONE, which preferentially digests single-

stranded RNA. The other was treated with RNase V1, which preferentially digests 

double stranded RNA. We used the normalized read counts from the two libraries to 

calculate a structure score for each nucleotide in the genome (see methods). The 

resulting scores represent the relative degree of base pairing at each position in a given 

RNA molecule. Higher scores indicate stronger evidence of pairing while lower scores 

indicate a more unpaired region of the RNA. We used these scores to inspect miRNAs 

taken from miRBase. 



 

50 

  

The current miRBase annotation (v21) contains entries for 325 known and predicted 

Arabidopsis pri-miRNA transcripts. The predictions take into account the known or likely 

position of the mature miRNA within the stem-loops, but for many transcripts the exact 

positions of the 3' and 5' ends of the RNA are unclear. Of these annotated pri-miRNAs, 

168 were detectable in our RNA-Seq libraries. We further narrowed our focus to 

transcripts that had calculable structure scores for at least half of their nucleotides 

resulting in a list of 88. We used the structure scores of these transcripts to fit a cubic 
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spline for smoothing. 

 

 

Figure 3.1: Example structural profiles of annotated miRNAs. Each position is given a structure 

score with higher scores indicating more evidence of a nucleotide being paired and lower scores 

indicating more evidence of it being unpaired. A cubic spline is fit to each profile revealing a 

characteristic pattern of an unstructured region near the center flanked by highly structure 

regions. 
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The structure profiles of many of these genes follow a characteristic pattern (Figure 3.1). 

They contain a central local minimum flanked by two local maxima indicating a region of 

low secondary structure in between two regions of high secondary structure. The 

simplest interpretation of this pattern is that it reflects the pri-miRNA's hairpin loop. The 

5' structured region is paired with the 3' structured region forming the stem and the 

unstructured region between them is the loop. This pattern is evident even in profiles 

with positions that could not be scored due to low sequence depth (Figure 3.2). In such 
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profiles we interpolated missing scores using the spline fit.

 

 

Figure 3.2: Examples of structure profiles with incomplete data. Despite having positions that 

could not be scored due to sparse data, profiles reveal the same pattern of secondary 

structure as completely scored profiles. Missing scores (red) are interpolated according to a 

cubic spline. 
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We compared our structure scores to the annotated structures from miRBase (Figure 

3.3). In many cases, we found that positions with low structure scores, which we would 

predict to be unpaired, were annotated as paired, especially in the loop. This is 

consistent with a previous study that found differences between the secondary 

structures of in vitro transcribed pri-miRNA and RNA secondary structures empirically 

determined by through and enzymatic and chemical probing.139 Our data recapitulate 

this finding in high throughput and in vivo. 

 

 

Drawing 3.3: Examples of annotated secondary structures with empirical ds/ssRNA-seq structure 

scores superimposed. Warm colors indicate high secondary structure, cool colors indicate low 

secondary structure.  
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3.3 DISCUSSION 

Powerful computational tools have been developed for detecting miRNAs using genomic 

data, however validation of such predictions remains an important step in miRNA 

discovery. Small RNA sequencing (smRNA-Seq) provides evidence of true miRNA 

transcripts by demonstrating the expression of mature miRNAs at candidate loci.71 

MiRBase, the primary source for miRNA annotations, curates smRNA-Seq data sets 

alongside its other annotations for each miRNA when appropriate datasets are available. 

Clear smRNA-Seq signal at a given locus is convincing evidence that a smRNA is being 

produced there. 

It is important to note that miRNAs are only one of several classes of smRNA produced 

by plants. They are defined, in part, by their biogenesis. Each miRNA begins as a Pol II 

transcript and folds into pri-miRNA with a distinct hairpin loop structure, which is then 

cleaved to produce a pre-miRNA. The pre-miRNA is, in turn, cleaved to produce the 

mature miRNA.  

Because pri-miRNA, pre-miRNAs and mature miRNAs all exist simultaneously in the 

cell, the secondary structure of a sequence is not simply defined. A given genomic locus 

is associated with the both the structured precursor molecules and the unstructured 

mature miRNA. Crucially, the dataset we analyzed was prepared from purified nuclei, 

limiting the amount of cytosolic mature miRNA and enriching for the structured 

precursors. 

We observed a pattern of RNA secondary structure consistent with the hairpin loops of 

pri-miRNAs and pre-miRNAs at multiple annotated miRNA loci providing evidence that 
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the smRNAs produced at those loci are true miRNAs arising from pri-miRNA transcripts. 

We argue that high throughput enzymatic probing effectively validates proposed miRNA 

locus annotations. 

In addition, we noticed differences between the structural patterns we observed and the 

annotated structures from miRBase. In particular we noted many nucleotides that were 

annotated to be involved in base pairing interactions but appeared to be unpaired in our 

data. We proposed a method for updating existing annotations using empirical 

secondary structure information. High throughput enzymatic probing, when combined 

with nuclear purification, is a powerful tool for validating miRNAs and honing their 

structural annotations at a genomic scale. It will be intriguing to see this combination of 

techniques applied to other systems. Emerging model organisms with less genomic 

miRNA annotation will likely benefit from more rapid and confident miRNA detection. It 

might also be applied to disease states in which miRNA misregulation plays an important 

role. 

 

3.4 METHODS 

Raw sequencing reads were obtained from experiment, performed by my colleagues in 

the Gregory lab, on RNA secondary structure in the Arabidopsis nucleus.113 The data 

included one library prepared from RNA that had been treated with RNase ONE, an 

enzyme that digests single-stranded RNA, and a second library in which the RNA had 

been treated with RNase V1, which digests double stranded RNA. 
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All reads were trimmed using cutadapt.109 Trimmed and untrimmed reads were 

combined and mapped to the genome (TAIR10) using tophat.110 Reads that were too 

short to be trimmed and reads that could not be aligned were discarded. We allowed up 

to two mismatches per read and a maximum edit distance of two. Reads that mapped to 

more than five locations in the genome were discarded. Read coverage at each 

nucleotide was calculated using bedtools111 and normalized to library size. 

We calculated a structure score based on the read coverage at each nucleotide in the 

two libraries. Nucleotides that are comparatively more represented in the RNase ONE 

treated library than in the RNase V1 library are considered to be more likely to be in 

structured regions while the opposite pattern indicates a higher likelihood of being in an 

unstructured region. The structure score is calculated as the generalized log ratio of 

normalized RNase ONE coverage to normalized RNase V1 coverage at each position i. 

 

 

A higher structure score indicates a higher degree of secondary structure while a lower 

score indicates more evidence of unstructured RNA. The scores were loaded to a 

mySQL database and can be browsed and downloaded using our web tool, Structure 

Surfer (http://tesla.pcbi.upenn.edu/structuresurfer/). 

A list of Arabidopsis miRNAs was obtained from miRBase along with their sequences, 

genomic coordinates and structural annotations.135–138 The coordinates were used to 

query our database. All miRNAs having computable scores for at least half of their 

positions were selected for further analysis. The structural annotations from miRBase 

Si = glog ONEi /V1i( )
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were converted into RNAFold132 constraint syntax. The miRNA sequences were folded 

with RNAFold both with and without constraints. 

For each miRNA, a cubic spline with seven degrees of freedom was fitted to the 

structure scores. At nucleotide positions with missing scores, the score was interpolated 

from the spline. The second derivative of each spline was then calculated in order to 

determine the concavity at each nucleotide. Regions of the miRNA that were concave 

down were considered likely to be involved in base pairing while concave up positions 

were considered to be likely unpaired. 

This information was used to update the constraints parsed from the miRBase 

annotations. Each annotated base pairing interaction was considered individually. In 

cases where both nucleotides involved in the pair occurred in concave up regions, the 

structure constraints were updated to reflect that those nucleotides were unpaired. 

Regions in which only one nucleotide in a pair occurred in a concave up region were 

considered ambiguous and were allowed to fold according to MFE. 

 

CHAPTER 4. Genome-wide mapping of uncapped and cleaved transcripts (GMUCT) 

This chapter was adapted from Willmann, M. R., Berkowitz, N. D. & Gregory, B. D. 

Improved genome-wide mapping of uncapped and cleaved transcripts in eukaryotes--

GMUCT 2.0. Methods San Diego Calif 67, 64–73 (2014). 
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Abstract 

The advent of high-throughput sequencing has led to an explosion of studies into the 

diversity, expression, processing, and lifespan of RNAs. Recently, three different high-

throughput sequencing-based methods have been developed to specifically study RNAs 

that are in the process of being degraded. All three methods—genome-wide mapping of 

uncapped and cleaved transcripts (GMUCT), parallel analysis of RNA ends (PARE), and 

degradome sequencing—take advantage of the fact that Illumina sequencing libraries 

use T4 RNA ligase 1 to ligate an adapter to the 5′ end of RNAs that have a free 5′-

monophosphate. This condition for T4 RNA ligase 1 substrates means that mature 

mRNAs are not substrates of the enzyme because they have a 5′-cap moiety. As a 

result, these sequencing libraries are specifically made up of clones of decapped or 

degrading mRNAs resulting from 5′-to-3′ or nonsense-mediated decay (NMD) and the 3′ 

fragment of cleaved microRNA (miRNA) and small interfering RNA (siRNA) target RNAs. 

Here, we present a massively streamlined protocol for GMUCT that takes 2–3 days, can 

be initiated with as little as 5 µg of starting total RNA, and involves only one gel size-

selection step. We show that the resulting datasets are similar to those produced using 

the previous GMUCT and PARE protocols. In total, our results suggest that this method 

will be the preferable approach for future studies of RNA degradation intermediates and 

small RNA-mediated cleavage in eukaryotic transcriptomes. 
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4.1. Introduction 

I briefly discussed the relationship between RNA secondary structure, smRNAs and 

RNA cleavage. Specifically, many smRNAs have structured precursors, which are 

cleaved to produce smRNAs. Additionally, many regulatory smRNAs including members 

of the miRNA and siRNA classes regulate their targets by cleaving them. In this chapter I 

will discuss a technique developed by my colleagues that is capable of detecting 

cleavage events on a transcriptome-wide scale. 

The key principle behind this is the observation that cleavage of a capped, 

polyadenylated RNA results in two products, a capped RNA with a 3' hydroxyl at the 

cleavage site and a polyadenylated RNA with a 5' monophosphate. The later molecule 

can be directly ligated to a 5' sequencing adapter. Intact transcripts are protected from 

such ligation by their 5' caps resulting a sequencing libraries which represent only the 

transcripts which have been cleaved or are actively undergoing degradation. 

Recently, three different high-throughput sequencing based methods (genome-wide 

mapping of uncapped and cleaved transcripts (GMUCT), parallel analysis of RNA ends 

(PARE), and degradome sequencing) have been developed to study the degradation of 

mRNAs by exploiting this chemistry72,140,141. The pathways that degrade mRNAs are 

highly conserved in eukaryotes. Most turnover of normal, functional mRNAs occurs by 

5′-to-3′ degradation, 3′-to-5′ decay, or RNA silencing142–146. Aberrant mRNAs are 

degraded by one of three pathways—nonsense-mediated mRNA decay (NMD), non-

stop decay (NSD), and no-go decay (NGD)147–150.  
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In total, the GMUCT, PARE, and degradome approaches are useful for studying 5′-to-3′ 

decay, small RNA-mediated target cleavage, and NMD, but not 3′-to-5′ decay, NSD, or 

NGD because a key enzyme (T4 RNA ligase 1) used to construct the library of 

molecules to be sequenced requires an available 5′-monophosphate on every RNA to be 

cloned. This requirement also means that mature, functional mRNAs are not substrates 

of these high-throughput methods because they have a 5′-cap. As a result, these 

sequencing libraries are specifically made up of clones of decapped or degrading 

mRNAs from 5′-to-3′ exoribonucleases, the 3′ fragment of cleaved miRNA and siRNA 

targets, and NMD decaying mRNAs.

Here, we present a streamlined method for GMUCT that we call GMUCT 2.0. The new 

method reduces the time necessary to make a GMUCT library from 5–6 to 2–3 days and 

decreases the amount of starting total RNA from 50 µg to 5 µg141,151. We use this 

protocol to make libraries of degrading and cleaved RNAs isolated from plant tissue and 

human cell lines. We also compare the data generated from this improved, more time-

efficient method to data obtained using the original GMUCT141, PARE140, and degradome 

sequencing72 approaches to show that the data produced is similar. Thus, we have 

significantly improved a methodology that will be widely useful for future studies of 

mRNA turnover in all eukaryotic organisms. 

 

4.2. GMUCT 2.0 protocol 

The new method for making GMUCT sequencing libraries is summarized in Figure 1, 

where it is also compared to the original GMUCT method141,151.
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Figure 4.1: Comparison of the original GMUCT (GMUCT 1.0) and the new streamlined GMUCT 

2.0. Both methods begin the same way, with the selection of poly-A RNA, ligation of the 5′-RNA 
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adapter, and reverse transcription, but the type of reverse transcription is different in each case. 

The original GMUCT protocol performs a traditional reverse transcription with an oligo-dT 

primer followed by PCR using oligo-dT and 5′ adapter primers. The double-stranded DNA is then 

fragmented, both 3′ and 5′ DNA adapters are ligated, and the library is amplified, adding indices 

in the process. In GMUCT 2.0, the reverse transcription is performed using a primer that has the 

3′-adapter sequence on the 5′ end and a random hexamer on the 3′ end, allowing for the adapter 

to be added during reverse transcription. The library is amplified and indices are added by PCR. 

 

4.3 Protocol 

4.3.1 Experimental techniques 

For the complete experimental method please refer to Willmann et al.152 Briefly, library 

preparation can be accomplished in three days, starting with RNA purification from a 

tissue of interest. We typically purify our RNA using the Qiagen miRNeasy Mini Kit. To 

verify that the starting total RNA is of high quality, the concentration, purity, and 

degradation should be examined using Agilent’s BioAnalyzer or a Nanodrop 

spectrophotometer and then running an agarose gel. 

We purify polyadenylated RNA using the Dynabeads mRNA DIRECT kit. Many other 

companies sell poly-A selection kits, and these are also likely to work. We then ligate on 

the 5' sequencing adapter, capturing only RNA molecules with free 5' monophosphate 

groups. We then perform one or two more rounds of poly-A selection, this time to purify 

the ligation products away from any unligated 5' adapters. This step is important for 

reducing adapter-adapter clones. 
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On the second day of the protocol, we reverse transcribe the adapter ligated RNAs with 

primer containing a random hexamer sequence and the sequence of the 3' sequencing 

adapter. It's this priming step that chiefly differentiates GMUCT 2.0 from other 

techniques that sequence cleaved and degrading transcripts. It allows us to avoid 

fragmentation and 3' adapter ligation, steps which take time and reduce efficiency. 

Following this step we amplify the adapter ligated molecules using PCR. 

On the final day, we size select the amplicons on polyacrylamide gel. The samples are 

then cut and extracted from the gel and precipitated. After resuspension, they are ready 

to be quantified and sequenced. 

 

4.3.2 Computational analysis 

Using this updated protocol, we constructed 2 replicate GMUCT libraries using RNA 

from mixed stage flower buds of the Arabidopsis thaliana accession Columbia (Col-0) 

and three human cell lines—the cervical cancer cell line HeLa, human embryonic kidney 

293T (HEK293T) cell line, and the human chronic myelogenous leukemia cell line K562. 

After receiving the Illumina sequencing data, the reads were trimmed to remove the 

adapter sequences, the abundance of each unique read was determined, and unique 

reads were mapped to the Arabidopsis and human genomes, respectively. The vast 

majority of the inserts were 50 nt or longer (data not shown). Because (1) the GMUCT 

protocol clones only pieces of RNA that have a free 5′-monosphosphate, which are 

produced as a result of many of the degradation processes in the cell, and (2) the exact 

position of the 3′ end is not important because it is randomly determined based on where 

the random hexamer primer binds to the RNA, the important information from each 
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cloned insert is the genomic location of the nucleotide at the 5′ end of each read. As a 

result, all mapped sequencing reads that start with the same 5′ nucleotide are summed 

together to calculate the number of cleavage/degradation events that occurred at that 

position of the RNA molecule in the tissue or cell line of interest. 

Using this information, we plotted the summed distribution of GMUCT 2.0 reads across 

all protein-coding transcripts for the libraries from the Arabidopsis flower buds and the 

three human cell lines to obtain an idea of the frequency of decay products in different 

parts of mRNAs (Figures 3A and D). In all libraries of both species, there were 

significantly more reads at the 3′ end of mRNAs compared to the 5′ end. This is similar 

to the result we obtained by reanalyzing the Arabidopsis flower bud data obtained using 

the original GMUCT141 and PARE140 protocols (Figures 3B and C, respectively). This 

same distribution of mRNA degradation products has previously been reported for 

degradome sequencing libraries72. In total, these results indicate that the highly 

improved GMUCT 2.0 protocol captures the expected collection of turnover events in 

protein-coding mRNAs of both plants and animals.
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We also found that the total abundance of GMUCT 2.0 reads varied greatly across all 

protein-coding transcripts. However, in general the abundance of GMUCT reads for a 

transcript was positively correlated with the overall abundance of that mRNA calculated 

using mRNA sequencing (mRNA-seq) data (Figure 4). This result reveals that increased 

levels of mRNA degradation events will be interrogated for RNAs that are more 

 

Figure 4.2: Number of GMUCT reads for eukaryotic transcripts is positively correlated with their 

abundance. For every detectable Arabidopsis transcript, its overall abundance as determined by mRNA-

seq (x-axis) is plotted against its total cleavage profile as determined using GMUCT 2.0 (y-axis) for one 

Arabidopsis Col-0 flower bud replicate (A) and the other (B). r values denote the Pearson correlation 

between the two datasets. 
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abundant and vice versa. These results are consistent with what was previously 

observed using the degradome sequencing approach72, and suggest that the number of 

normal molecules decaying 5′-to-3′ and targeted by NMD for a given protein-coding 

transcript are proportional to its abundance. 

One of the most promising uses of GMUCT, and other sequencing methods that 

specifically clone degrading mRNAs, is for validating and identifying miRNA and siRNA 

cleavage sites on target mRNAs. We looked at the average abundance of GMUCT 

reads with 5′ ends at miRNA target cleavage sites compared to the 100 bp up- or 

downstream for both Arabidopsis and humans. In both of the GMUCT 2.0 datasets for 

Arabidopsis flower buds there was a clear peak of read 5′ ends precisely at the predicted 

miRNA cleavage sites ( Figure 2A). Similar results were obtained when reanalyzing the 

original Arabidopsis GMUCT141 and PARE datasets140 (Figure 2B and C, respectively). 

Conversely, none of the libraries made from the human cell lines showed a peak in 

abundance at predicted miRNA cleavage sites (Figure 2D).  

This result is consistent with the current understanding of the differences between plant 

and mammalian miRNA activity. While miRNA-directed target cleavage and translational 

inhibition are known to occur in both plants and animals, cleavage is thought to be more 

common in plants and translational inhibition more common in animals. This difference 

in silencing mechanism has been attributed to the disparity in complementarity between 

target RNAs and miRNAs in plants versus mammals. One confounding factor is that the 

highly complementary miRNAs found in plants are more unambiguous to predict than 

their less complementary mammalian counterparts. Our metatranscript approach 
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exhaustively summarizes predicted mammalian targeting relationships and finds no 

signal. It is premature to infer absence from a negative result, however these data are 

reassuring about the consistency of our method compared to other approaches. In total, 

these results also validate the usefulness of data obtained using the GMUCT 2.0 

protocol for future studies of smRNA-directed cleavage events. 

 

 

Figure 4.3: Number of GMUCT reads for eukaryotic transcripts is positively correlated with their 

abundance. For every detectable Arabidopsis transcript, its overall abundance as determined by 

mRNA-seq (x-axis) is plotted against its total cleavage profile as determined using GMUCT 2.0 (y-axis) 

for one Arabidopsis Col-0 flower bud replicate (A) and the other (B). r values denote the Pearson 

correlation between the two datasets. 
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Figure 4.4: GMUCT reads are highly abundant at the miRNA target cleavage site in Arabidopsis, 

but not in human cell lines. Each graph shows the average number of GMUCT read 5′ ends at the 

collection of miRNA target cleavage sites and the 100 nt up- and downstream. This analysis was 

done by summing the number of reads whose 5′ ends map at each nucleotide in the window for 

each miRNA target transcript, renormalizing all of the reads for each transcript in this window 

such that the total across a window was 1, adding the normalized total from all of the transcripts 

for each nucleotide, plotting the result, and scaled to one million counts. The miRNA target site 

cleavage profiles are plotted for the two Arabidopsis Col-0 GMUCT 2.0 libraries from this paper 

(A), the Arabidopsis Col-0 GMUCT 1.0 library from (1) (B), the Arabidopsis Col-0 PARE library 

from (3) (C), and the six human cell line GMUCT 2.0 libraries from this paper (D). There are two 

GMUCT 2.0 replicates for HEK293 (red lines), HeLa (blue lines), and K562 (green lines) cells. 

The list of miRNA targets used for the Arabidopsis analysis was a compilation of targets 

validated by the PARE method (3). The list is found online at http://www.mpss.udel.edu/at_pare/. 

The list of miRNA targets used for the human analysis is composed of predicted human targets 

found at http://www.microrna.org[23]. The specific miRNA target site cleavage profiles for the 

two Arabidopsis Col-0 GMUCT 2.0 libraries from this paper are provided for the specific miRNA 

targets AT4G37740.1 (E), AT1G10120.1 (F), AT2G16600.2 (G), and AT1G27340.1 (H). 

 

 

4.4 Conclusions 

The development of high-throughput sequencing and the increased interest in 
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understanding the different levels of gene expression regulation has resulted in many 

new genomic approaches for analyzing very specific populations of mRNAs. GMUCT, 

PARE, and degradome sequencing were all developed to study mRNA degradation 

resulting in free 5′-monophosphates on decaying mRNAs, including 5′-to-3′ 

exoribonucleolytic decay, RNA silencing directed target RNA cleavage, and non-sense 

mediated decay of aberrant mRNAs.

Here, we present an improved GMUCT protocol that produces results similar to the 

longer original method and to the two other high-throughput sequencing-based methods 

(PARE and degradome sequencing) for studying mRNA degradation but requires less 

time and less starting total RNA. Additionally, the distribution of sequencing reads across 

transcripts, the correlation between GMUCT reads and the steady state abundance of 

mRNAs measured by mRNA sequencing (mRNA-seq) libraries, and miRNA target 

cleavage in plants are similar for the different methods. Thus, our improved methodology 

is more time efficient, and still captures the desired information.

As expected and in contrast to the analysis of plant GMUCT data, analyzing the average 

abundance of GMUCT products at human miRNA target sites did not provide obvious 

evidence of widespread cleavage. These results are consistent with most previous data 

concerning animal miRNA silencing mechanisms. It would be of interest, however, to 

further parse the GMUCT data from the human cell lines to test the hypothesis that it is 

the level of complementarity between a miRNA and its target that determines whether 

this smRNA will induce the cleavage of its target. Overall, the shorter time investment, 

increased simplicity, and lower required input of starting total RNA needed for the 



 

72 

  

improved GMUCT method will likely lead to the increased use of this approach for future 

studies of mRNA degradation in all eukaryotic organisms. 

 

Accession numbers 

All GMUCT 2.0 and mRNA-seq sequencing data generated for this study from 

Arabidopsis Col-0 mixed stage flower buds (2 GMUCT replicate libraries and 2 mRNA-

seq replicate libraries) and the three (HeLa, HEK293T, and K562) human cell lines (2 

GMUCT replicates for each (6 libraries total)) were deposited in GEO under the 

accession GSE47121. 

 

5 RNA Dependent RNA polymerases (RDR) and their substrates 

5.1 INTRODUCTION 

In general, eukaryotic RNA molecules are initially transcribed as single stranded 

transcripts by DNA-dependent RNA polymerases. However, it is becoming increasingly 

clear that double-stranded RNA (dsRNA) molecules have important roles in gene 

regulation and other cellular processes. Thus, it is not surprising that cells have multiple 

ways of creating double stranded structures. In a previous chapter, I discussed two 

examples of such structural elements, microRNA stem loops and iron response 

elements. Both form double stranded regions by folding into a hairpin shape using intra-

molecular hydrogen bonds. Such intra-molecular bonds are also found in other important 

functional RNAs such as rRNAs, tRNAs, and ribozymes. In addition to structures formed 

by intra-molecular bonds, many eukaryotic organisms produce intermolecular dsRNA 
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molecules using a class of enzymes known as RNA-dependent RNA polymerases 

(RDRs). 

This class of enzymes uses an RNA molecule as a template to synthesize a reverse 

complementary RNA. A useful comparison can be made to reverse transcriptases, a 

class of enzymes widely used in various biological experiments, that synthesize 

complementary DNA (cDNA) using an RNA molecule as a template. RDRs behave 

analogously except they produce RNA instead of cDNA. 

The functional roles of RDRs are diverse, but in general they are important players in the 

biosynthesis of small RNAs (smRNAs) that function in various RNA silencing pathways. 

Perhaps the most straightforward role for RDRs is in the production of small interfering 

RNAs (siRNAs), which once produced can target unwanted transcripts, such as 

transposons and viral RNAs in both cis and trans. More specifically, a RDR can use the 

unwanted transcript as a template and produce its reverse complement, making it 

double stranded. The resulting double stranded molecule can then be cleaved by a 

RNase III DICER enzyme into siRNAs. This cleavage has two effects: the unwanted 

transcript is destroyed and siRNAs complementary to it are produced. These 

complementary siRNAs can then act as specificity factors to guide repressive factors to 

other copies of the unwanted transcript by base pairing with them. 

The mechanisms of suppression vary between RDRs as do the templates they prefer 

and the siRNAs they produce. For instance, some substrate RNAs require priming with a 

smRNA acting as a primer, while others can be directly used as templates without 

priming 154. This diversity likely stems from the long evolutionary history of RDRs. RDRs 

are ancient genes 155, and it is thought that there were three RDR genes in the last 
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common ancestor of animals, plants and fungi. Over time, each of these has given rise 

to a family of orthologs, the α, β, and γ RDRs. 

Interestingly, most animals have lost their RDRs during their evolution. However, RDRs 

can be found in the nematode C. elegans. They are widely found in plants and fungi 

where they have developed a broad range of biological functions. In addition to 

suppressing unwanted exogenous RNAs, RDRs are also involved in regulating 

endogenous genes during development and stress 156–158. Furthermore, it is likely that 

there are roles for RDRs that have not yet been discovered.  

The model plant Arabidopsis thaliana is an appealing system for studying RDRs. Its 

genome contains three α RDRs and three γ RDRs, and the substrates and functions of 

these proteins have been studied to different degrees. For instance, the γ RDRs have 

not been assigned any function. However, they are evolutionarily conserved and they 

are transcribed in multiple tissues, suggesting that they have some function. The α 

RDRs (RDR1, 2 and 6) have each been functionally described and remain a topic of 

current research. 

RDR1 and RDR6 are known to play an important role in defending plants against 

infection by several viruses159–166. RDR2 likely has a more limited antiviral role, but 

mutations in any of the three α RDRs result in increased susceptibility to viral 

infection161. RDRs defend against viruses through post-transcriptional gene silencing 

(PTGS).162 

In antiviral PTGS, an RDR uses a viral transcript as a template to synthesize the 

complementary strand resulting in a perfectly complementary double-stranded RNA 
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molecule. This double-stranded molecule is subsequently cleaved by an RNase III 

DICER/DICER-LIKE (DCL) family protein,167 resulting in both turnover of the target 

transcript as well as production of virus-derived siRNAs (vsiRNAs). These vsiRNAs are 

then loaded into ARGONAUTE (AGO) family proteins. AGOs use these vsiRNAs as 

specificity factors to detect additional viral transcripts and cleave them, further increasing 

turnover of these pathogens.159,168–170 

In addition to their function in turning over viral transcripts, RDRs also play a role in 

down-regulating endogenous transcripts in plants. Some of the most well studied 

examples of this type of regulation belong to the RDRs involved in making the class of 

siRNAs known as trans-acting siRNA (TAS), which are encoded by endogenous loci 

(TAS genes). siRNAs made from dsRNAs produced by RDRs using these gene 

transcripts as templates regulate other target RNAs in trans, analogous to miRNA-

directed silencing. Also like miRNAs, RNAs from these loci are transcribed by Pol II, 

processed into smRNAs by a DCL protein, and these siRNAs are loaded into AGO1, 

which then uses them as specificity factors to target unrelated transcripts for silencing.171 

In contrast to vsiRNAs, they regulate transcripts other than their own precursors, and are 

thus referred to as trans acting siRNAs (ta-siRNAs). One important difference between 

miRNA and ta-siRNAs is in their requirements for biogenesis. 

Specifically, TAS transcript processing begins when a primary RNA molecule produced 

by Pol II is targeted by a miRNA for AGO1-mediated cleavage.172–174 The details of the 

targeting vary between family members and, as a group, they have important differences 

from other miRNA targeting events.173–176 
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After being cleaved, a TAS transcript is then stabilized by SUPPRESSOR OF GENE 

SILIENCING3 (SGS3) and recognized by RDR6.174,177,178 RDR6 then synthesizes the 

reverse complement of the transcript, making it double stranded. This double stranded 

molecule is then cleaved into ta-siRNAs, primarily by DCL4, although DCL2 and DCL3 

can also inefficiently produce smRNAs from these templates.128 DCL4's cuts produce 

siRNAs in 21 nucleotide (nt) intervals starting from the initial miRNA cleavage site 

resulting in ta-siRNAs that are in 21 nt phase. Thus, the same set of ta-siRNAs is 

produced from each TAS dsRNA molecule.172,175 

Some of the ta-siRNAs are loaded onto AGO1, which uses them to target unrelated 

RNAs, including the mRNAs encoding some members of the AUXIN RESPONSE 

FACTOR (ARF) family of transcription factors (e.g. ARF3).179. These ARF transcription 

factors are broadly important, including during the development of leaves177,178,180,181 and 

flowers178,182,183 and in phase change.178 

In addition to targeted regulation of single genes such as the ARFs, some RDRs have a 

role in genome-wide regulation. For instance, RDR2 is particularly important in forming 

and maintaining regions of heterochromatin. Its pathway has some parallels to the ta-

siRNA pathway that is directed by RDR6 but there are significant differences.  

More specifically, RDR2 along with an SGS3-like cofactor RDM12,184–186 uses a primary 

transcript as a template to produce a double-stranded RNA molecule which is then 

cleaved by a DCL, in this case DCL3,187,188 into smRNAs. These heterochromatin-

associated siRNAs (hsiRNAs) are mostly 24 nt in length189 and they are the most 

abundant smRNAs in the cell.  
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They are, as with the 21 nt ta-siRNAS, loaded onto AGO proteins and used as specificity 

factors. However the AGOs loaded with hsiRNAs are AGO4, 6, and 9.190,191 RISC 

complexes containing these AGOs are involved in formation and maintenance of DNA 

methylation and subsequent heterochromatin formation. Because they use hsiRNAs to 

identify their targets, this process is called RNA dependent DNA methylation 

(RdDM).73,188,189,192,193 

Two other important components of the RdDM pathway are the plant specific RNA 

polymerases Pol IV194 and Pol V. Pol IV produces the transcripts that RDR2 uses as 

templates.194–197 These transcripts include transposons, telomeres, pericentromeric 

regions, and other repetitive elements.189,194–197 The hsiRNAs produced from these 

transcripts, once loaded onto an AGO, guide methylation at similar repetitive loci 

including their own loci of origin.190,191,198 Pol V also produces transcripts from these 

regions. However, these transcripts act as scaffolds that physically interact with hsiRNA-

loaded AGOs, recruiting this complex to the site to be methylated.199–202 

The detailed mechanisms described for RDR6's role in PTGS and RDR2's role in RdDM 

are two examples of critical roles played by RDRs in the cell. However RDRs likely have 

functions that are not yet described. For example, the γ RDRs (RDR3, 4, and 5) have no 

assigned roles despite the fact that they are evolutionarily conserved and they are 

detectably expressed in multiple tissues. 

In order to better understand the roles of the RDRs in plant transcriptomes, I describe a 

genome-wide search for endogenous RDR substrates. To do this, we used RNA-seq to 

identify genomic loci that require RDRs for full transcription of both double-stranded 

RNAs and smRNAs. The list of well-characterized substrates for the a RDRs provides an 
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opportunity to internally validate my analytical approaches and adds confidence when 

novel substrates are identified. I further characterize these loci by describing the 

smRNAs that they produce and investigating the likely targets of these smRNAs. 

 

5.2 Methods 

Library Preparation 

Total RNA was purified from Arabidopsis tissue, either leaf or unopened flower bud. 

Sequencing libraries were prepared for smRNA-seq and dsRNA-seq as described in 

Zheng et al. 2010 and sequenced on an Illumina HiSeq using the 50 nt single end 

sequencing protocol as per manufacturer's instructions (Illumina Inc., San Diego, CA). 

 

Sequencing Read Processing and Alignment 

Some of the sequencing libraries were sequenced more than once to achieve greater 

sequencing depth. Multiple runs for each library were pooled by concatenating fastq 

files. For reads with small inserts, often the 3' sequencing adapter is included in the 

sequence. These adapter sequences were trimmed using cutadapt.109 Trimmed and 

untrimmed reads were separately mapped to the Arabidopsis genome (TAIR10) using 

TopHat,110,203 an aligner which takes into account splice junctions. Reads that could not 

be trimmed or mapped were discarded. We allowed up to two mismatches per read and 

a maximum edit distance of two. Because of the repetitive nature of some RDR 

substrates, we allowed up to 100 alignments per read. 
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Read Count Computation 

The number of reads aligning to each transcript was counted using HTSeq.204 This was 

done in a strand specific manner, separately counting reads that aligned to the sense 

and antisense sequences. The genome was partitioned into unbiased 500 nt bins. The 

number of reads falling into each bin was counted using bedtools.111 

 

Differential Expression and Hit Calling 

Differential expression between Col-0 and each of the mutant genotypes was computed 

using the R package edgeR205 for all library types. Features were considered to be 

putative RDR substrates if they had a decrease in smRNA expression of at least 33% 

with a false discovery rate below 0.1 and at least a nominal decrease in dsRNA 

expression. 

 

Size Classification of smRNA 

Trimmed smRNA-seq reads were used as a proxy for intact smRNAs. For each 

genotype, the set of putative RDR substrate genomic bins was intersected with the 

smRNAs in Col-0. These were classified by length and 5' nucleotide. 

 

Target Prediction and Analysis 
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The set of all smRNAs aligning to the bins described above, excluding those assigned 

only to RDR2, was converted to a list of unique sequences. These were used to query 

psRNATarget100 for target sites among the set of Arabidopsis transcripts, excluding 

miRNAs. GMUCT data were obtained from Willmann et al., the study discussed in a 

previous chapter. GMUCT scores and PhastCons scores206 for each base were 

intersected with 100 nt windows surrounding predicted targeting interactions. 

 

5.3 Results 

Internal Validation with TAS loci 

In order to test the sensitivity of my differential expression quantification, I inspected a 

very well characterized family of RDR substrates, the TAS loci. These transcripts are 

targeted by miRNAs triggering recruitment of SGS3 and RDR6. RDR6 synthesizes the 

reverse complement of each TAS RNA making it a suitable substrate for DCL4, which 

cleaves it into 21 nt ta-siRNAs.173–176,207 Therefore, I expected to see differential 

expression in both dsRNA and smRNA between Col-0 and rdr6 and sgs3 mutant plants 

(Figure 5.1). 

In general, the TAS loci show strong differential expression of smRNA in both the rdr6 

and sgs3 mutant backgrounds consistent with the roles of those two proteins in ta-siRNA 

production. In addition, I see significant differential expression on both the sense and the 

antisense strand for seven out of the ten TAS loci inspected in bud and six out of the ten 

in leaf. Antisense expression, and loss of antisense expression in the mutants, is an 
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unambiguous signal of RDR activity as the antisense strand is not a Pol II transcript but 

a direct product of RDR activity. 

TAS3a and TAS3b were not highly expressed enough in Col-0 to make differential 

expression calls. TAS4 is differentially expressed in leaf, however, despite its negative 

log fold change in bud, it does not reach significance after correction for multiple testing. 

The differential expression pattern in the dsRNA is consistent with the smRNA, but 

weaker due to lower expression in Col-0. This lower expression is likely due to the 

intermediate nature of these molecules. Depending on the kinetics of RDR6 and DCL3, 

they may exist in the cell very briefly, and therefore be rare in our dsRNA sequencing 

(dsRNA-seq) libraries. 

This analysis shows that RDR6 substrates are detectable by smRNA-seq and suggests 

that substrates of other RDRs will be detectable as well. The dsRNA-seq experiments 

provide a second line of evidence, increasing my confidence that hits identified using 

these methods are true RDR substrates. Taken together with the observation of 

differential expression of both sense and antisense RNAs in both dsRNA-seq and 

smRNA-seq, it demonstrates that these loci are most likely differentially expressed 

because they are direct substrates of RDRs as opposed to being differentially expressed 

due to upstream regulation. 
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RDR2 Genomic Bins 

 

Figure 5.1: Differential expression of the TAS loci, a class of known RDR6 and SGS3 substrates. 

In both mutants, most of the TAS loci show decreases in expression of both double stranded RNA 

(dsRNA) and smRNA consistent with loss of RDR activity as well as loss of smRNAs requiring a 

double stranded precursor. This differential expression is detectable on both the sense and anti-

sense strands, again consistent with absent RDR activity. 
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I next viewed the differential expression of unbiased 500 nt genomic bins between Col-0 

and an rdr2 mutant plants in order to test my pipeline's sensitivity to large scale genomic 

trends. RDR2 is involved in RdDM and is known to silence many targets including 

telomeres, the pericentromeric regions, transposons, and other repetitive elements. 

Inspecting chromosome 1 (Figure 5.2) reveals differentially expressed bins in both 

smRNA-seq and dsRNA-seq tiling the chromosome. 

Across the genome, 14,697 bins were identified as putative RDR2 substrates in 

unopened flower buds, with 3313 found on chromosome 1. Hits tile the entire 

chromosome and are most abundant in the pericentromeric regions. I don't observe 

enrichment for hits near the telomeres, possibly because the low complexity of these 

regions interferes with sequencing read alignment. Nearly half of the total putative 

substrates, 6204, overlapped with an annotated transposon, transposon gene, or 

transposon fragment. This ratio is consistent across chromosomes, for example 1217 

such transposon related bins were detected on chromosome 1. These data suggest that, 

in addition to being able to detect single gene substrates like the templates used by 

RDR6, the combination of dsRNA-seq and smRNA-seq is also powerful when detecting 

genome-wide RDR substrate trends. 
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Total RDR Substrate Identification 

I scanned the Arabidopsis genome for regions where wild type Col-0 plants robustly 

expressed both dsRNA and smRNA but lost expression of both in rdr1, 2, 4, 5, or 6. I 

also looked for lost expression in mutants of the RDR2 cofactor RDM12 and the RDR6 

cofactor SGS3. I interpret such sites as putative RDR substrates. Their differential 

expression patterns are consistent with transcripts that depend on RDRs to synthesize 

their reverse compliments making them suitable substrates for cleavage into smRNAs by 

a member of the DCL family. 

I considered two types of loci, TAIR10 annotated transcripts and unbiased 500 nt 

windows tiling the genome. This approach is designed to detect known genes that are 

 

Figure 5.2: Differential expression of smRNA (up) and dsRNA (down) in rdr2 within 500 nt genomic bins. 

Marked bins intersect with annotated transposable elements 
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substrates of RDRs as well as regions of the genome that have no annotated genes but 

are transcribed into RDR templates. I found putative targets for each of the proteins 

inspected (Table 1). 

 

 

Many of the transcripts identified showed differential expression of the antisense strand. 

This provides evidence that these transcripts are directly used as templates by RDRs. In 

some cases we identified both sense and antisense transcripts as differentially 

expressed hits. 

By far the greatest number of putative RDR substrates was found for RDR2. This is 

consistent with the fact that hsiRNAs, which depend on RDR2 for synthesis, are the 

most abundant smRNAs in the cell. It also makes sense that RDR2, which is important 

for proper heterochromatin formation, would result in gross, genome-wide differences in 

transcription when mutated.  

 

Table 5.1: Summary of putative RDR substrates identified in each of the transcripts across two tissue, 

unopened flower bud and leaf. For annotated transcripts, strand information is given. Significance calls 

can refer to sense or antisense or their intersection (two strand) or union (either strand). For 500nt 

genomic bins strand information was ignored. 
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I also note that many putative RDR substrates appear differentially expressed in more 

than one mutant background (Table 2). These counts represent the number of transcript 

that that had sense or antisense hits, or both.  

 

 

 

 

 

  

 

Figure 5.3: Shared genomic bin hits between RDRs and their known cofactors  

 

Table 2: Shared hits between genotypes using the union of sense and antisense differential expression 

calls. 
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Notably, RDR6 and its cofactor SGS3 share the bulk of their transcriptomic hits in both 

bud and leaf tissues. Similarly, RDM12 shares nearly all of its hits with RDR2. However, 

RDR2 has many more putative substrates, suggesting that it has robust activity even in 

the absence of its cofactor or that it requires RDM12 at only a subset of its substrates.  

Both of these trends are repeated, but weaker when considering genomic bins (Figure 

5.1). RDR6 and SGS3 show substantial overlap, but they are each associated with bins 

that were not identified in their cofactor. Similarly, RDM12 shares a majority of its bins 

with RDR2 but also has bins that are not shared. 

The two γ RDRs included in this study, RDR4 and 5, both have putative substrates. I will 

discuss each substrate list in more detail. However, it is notable that they have several 

shared hits, consistent with their high degree of homology. These data show that the 

combination of smRNA-seq and dsRNA-seq is powerful enough to detect genome-wide 

effects of RDR activity and co-factor relationships. 

 

RDR1 

I found a small number of putative substrates for RDR1. The presence of putative 

endogenous targets for RDR1 is notable because RDR1 is generally considered to act 

on exogenous targets such as viruses and transgenes. The list includes several proteins 

that either lack functional descriptions or have very minimal functional information such 

as assignment to a putative gene family. While it is impossible to draw conclusions from 
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a lack of characterization, one might speculate that these genes are ncRNAs, possibly 

even giving rise to functional siRNAs. There are several annotated ncRNAs on the list 

including snRNA-like genes as well as known protein coding genes. Interestingly, many 

of these hits were identified on the antisense strand lending evidence of RDR activity. 

The lists of putative RDR4 and RDR5 substrates are approximately divided between 

annotated transposable elements and annotated genes, suggesting that they may have 

multiple roles. Like RDR1, the two γ RDRs investigated here are associated with several 

uncharacterized and poorly characterized transcripts. Again, it would be premature to 

conclude anything about the functions of these genes. However, their lack of functional 

characterization invites speculation that they do not encode proteins. 

I visualized the smRNA profiles of the most highly expressed putative substrates in Col-0 

(Figure 4). In general, I do not see a pattern consistent with phased siRNAs being 

progressively excised. Instead, I see one or two dominant siRNAs for each transcript. 

This may be due to the excision preferences of a DCL or the loading preferences of an 

AGO. The dominant siRNAs for a given transcript can come from either the sense or 

antisense strand or both. The overall composition of siRNAs originating from putative a 

RDR substrates is similar to the total smRNA population in Col-0 (Figure 5.5). 

 

RDR4 and RDR5 

The lists of putative RDR4 and RDR5 substrates are approximately divided between 

annotated transposable elements and annotated genes, suggesting that they may have 

multiple roles. Like RDR1, the two γ RDRs investigated here are associated with several 
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uncharacterized and poorly characterized transcripts. Again, it would be premature to 

conclude anything about the functions of these genes. However, their lack of functional 

characterization invites speculation that they do not encode proteins. 

I visualized the smRNA profiles of the most highly expressed putative substrates in Col-0 

(Figure 4). In general, I do not see a pattern consistent with phased siRNAs being 

progressively excised. Instead, I see one or two dominant siRNAs for each transcript. 

This may be due to the excision preferences of a DCL or the loading preferences of an 

AGO. The dominant siRNAs for a given transcript can come from either the sense or 

antisense strand or both. The overall composition of siRNAs originating from putative a 

RDR substrates is similar to the total smRNA population in Col-0 (Figure 5). 

 

 

Table 5.3: Putative RDR1 substrates 
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Table 5.4: Putative RDR4 substrates 

 

Table 5.5: Putative RDR5 substrates 
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RDR6 and SGS3  

The putative substrates of RDR6 and SGS3 indicated by my detection method identified 

many of the previously known substrates of these proteins, providing internal validation 

of the hit lists. These include the TAS loci discussed, above as well as multiple members 

 

Figure 5.4: smRNA excision profiles of selected putative RDR4 and RDR5 substrates. The number of 5' 

and 3' read ends is plotted for each position. Peaks above the x axis indicate excisions from the sense 

strand, peaks below the axis indicate excisions from the antisense strand 
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of the Pentatricopeptide Repeat (PPR) Superfamily. In addition, we see many novel 

substrates including several genes associated with auxin response, an important plant 

hormone. This relates to the TAS3 genes because the ta-siRNAs produced from these 

transcripts regulate a family of transcription factors involved in response to auxin, the 

ARFs.177,179,180,182  

 

 

 

Table 5.6: Putative RDR6 substrates 
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Like the previously discussed RDRs, RDR6 and its cofactor SGS3 are associated with 

unannotated and poorly annotated genes. Inspecting the siRNA excision profiles of 

some of the known substrates reveals some evidence of phasing (Figure 5.6), 

particularly of TAS1A, which shows multiple phased excision sites. Other examples 

show two or more phased sites, but like the putative substrates of RDR4 and RDR5, one 

or two siRNAs dominate the profile. The siRNA populations mapping to RDR6 and 

 

Table 5.7: Putative SGS3 dependent substrates 
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SGS3 genomic bins also show enrichment for 21 nt siRNAs, consistent with the well-

described ta-siRNA biogenesis pathway. 

 

 

 

Figure 5.6: smRNA excision profiles for known RDR6/SGS3 substrates from the TAS family. The counts 

of 3' and 5' smRNA read ends are shown. Upward peaks are from the sense strand, downward peaks 

are antisense 
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RDR substrate derived siRNAs and their targets 

Plant siRNAs bind their targets through nucleotide pairing along almost their entire 

length, so it is possible to predict targets of siRNAs by searching for sites with near 

perfect complementarity in silico. In order to predict targets for siRNAs that arise from 

RDR substrate loci, I intersected a list of the smRNAs expressed in Col-0 with each set 

of genomic bins identified as RDR substrates, excluding the very large set associated 

with RDR2.  

These were then collapsed down to a set of unique putative siRNAs. This unique list was 

used to query the set of Arabidopsis transcripts, excluding miRNAs using the target 

search tool psRNATarget.100 I identified 12,304 predicted targeting interactions for RDR-

dependent siRNAs identified in our unopened flower bud analyses (Table 7). 

Inspecting the list for known previously characterized targeting relationships. Among the 

targets, I found multiple members of the Pentatricopeptide Repeat (PPR) family as well 

as members of a family with similar annotation, the Tetratricopeptide Repeat (TPR) 

genes. I found 139 targeting interactions involving 68 distinct PPRs and 119 interactions 

involving 73 distinct TPRs. Many members of these families appear as both putative 

RDR substrates, and as targets of the siRNAs that require RDR activity suggesting a 

potential self-regulatory mechanism,186 as previously described. 
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In addition, I found the known targets of TAS3-derived ta-siRNAs, ARF2, ARF3 and 

ARF4.177,179,182,208,209 All three are predicted by psRNATarget to be targeted at multiple 

sites by multiple siRNAs, the majority of which were from TAS3A or TAS3B. To further 

characterize these target sites I analyzed cleavage data at the miRNA target sites. 

Bud tissue was selected for this analysis because it could be integrated with a dataset 

from an experiment that can detect cleavage events. As discussed in a previous chapter, 

GMUCT is a sequencing based technique that takes advantage of the fact that RNA 

molecules which are cleaved or are being degraded have a free 5′ monophosphate. The 

protocol selectively clones such molecules into sequencing libraries.210 When the 

resulting reads are mapped to transcripts, each detectable cleavage event appears as a 

pileup of reads with a common 5' end corresponding to the cleavage site. 

The targeting interactions on the ARF2 and ARF3 transcripts fall into two regions on 

each transcript, with each site being targeted by multiple distinct siRNAs. This is 

possible because the sites overlap, but the siRNAs either have mismatches, are of 

slightly different lengths, or are have positions offset by a nucleotide or more. Similarly, 

psRNATarget predicts three target sites on ARF4, two of which match multiple TAS3A or 

TAS3B ta-siRNAs.  One matches a region of the genome with no known transcripts. No 

cleavage signal was detected on ARF2, I inspected the GMUCT 2.0 signal for ARF3 and 

ARF4 (Figure 7). 

Both replicates of GMUCT 2.0 show sharp peaks at the centers of both ARF3 target 

sites indicating a cleavage event. The GMUCT 2.0 coverage was lower for ARF4. 

However, there are peaks at the centers of both sites. Evolutionary conservation data 
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from a phastCons analysis was available for the ARF3 sites, and shows that both are 

highly conserved across plant species. 

Taken with the other findings in this study, the analysis of the ARF genes suggests that 

my pipeline is powerful enough to capture RDR substrates, identify the dominant 

smRNAs produced at those sites, predict targets for them and validate the targets that 

are cleaved, all on a genome-wide scale. 

 

5.4 Discussion 

In this study, I present a pipeline that uses RNA-seq technology to discover substrates of 

RDR, to characterize the smRNAs that they are processed into and to identify the 

targets of those smRNAs. I found putative substrates for five out of the six RDRs 

encoded in the Arabidopsis genome. 

The selection of Arabidopsis was advantageous because it allowed several opportunities 

for internal validation that strengthened my confidence in the novel substrates. The ta-

siRNAs and the TAS loci are among the best-characterized RDR substrates. The 

pipeline I show here was able to detect them using two lines of evidence, smRNA-seq 

and dsRNA-seq. In addition, it was able to predict targets of these siRNAs and 

demonstrate cleavage of those targets. 

In addition, I observed a less well-studied class of RDR6 substrates, the PPR genes. 

This large family of genes is known to produce siRNAs, which target members of the 

same gene family. I was able to detect this family as both substrates and siRNA targets. 
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I was also able to detect genome-wide differences in the rdr2 mutant. I noted that the 

mutant lost the ability to produce both dsRNAs, the direct product of RDR2, as well as 

the hsiRNAs that are cleaved from them. I was additionally able to distinguish the 

population of hsiRNAs from the ta-siRNAs produced by RDR6. For both RDR6 and 

RDR2 I observed common substrates that depend on both the RDR and a known 

cofactor, SGS3 and RDM12 respectively. 

Taken together, these observations add confidence to the putative substrates detected 

for the previously uncharacterized γ RDRs. The substrates assigned to these genes 

include many transcripts, which also lack a known function, but can be shown to produce 

smRNAs. Some of these smRNAs are predicted to target other transcripts. While more 

data must be collected before hypothesizing about their function, these finding invite 

speculation about their possible similarities to hsiRNAs and ta-siRNAs. 

In the future, it will be intriguing to functionally characterize these substrates as well as 

the substrates of RDR3. Of particular interest are the uncharacterized substrates of the γ 

RDRs as the function of these genes is still unknown. Because of the high homology of 

these genes, functional redundancy may limit the number of substrates that can be 

identified in a single mutant. 

Applying the pipeline used here to an rdr3/rdr4/rdr5 triple mutant will likely reveal more. 

To date, such a mutant has not been developed due to the difficulty of deleting three 

genes that exist as tandem repeats on the chromosome. However, with recent advances 

in CRISPR technology, development is very likely achievable. Ultimately it will be 

possible, when enough substrates are identified, to infer the criteria by which γ RDRs 

select their targets. 



 

99 

  

CHAPTER 6: Conclusions 

Summary 

In this dissertation, I discussed three intimately linked aspects of RNA biology: RNA 

secondary structure, RNA cleavage, and processing of small RNAs from their longer 

double-stranded precursors. First, I discussed a new database of RNA secondary 

structure data drawn from diverse high-throughout sequencing-based structure mapping 

techniques. I showed how browsing the database could reveal both regions of 

consensus among the techniques and transcript features where they differed. I argued 

that the regions of difference showed the limitations of interpreting any one technique, 

but that by integrating them I could be more confident about the structural properties of 

specific transcripts. 

In browsing the database, I navigated to transcripts with known structures. In particular, I 

was able to see the hairpin structures of two murine Iron Response Elements (IREs). 

The database showed evidence of structure in the stem of both IREs and lack of 

structure in the loop, agreeing with the known structures of these elements. I also 

examined another class of hairpins, primary and precursor miRNA (pri-miRNA and pre-

miRNA) transcripts. I considered them together for two reasons. One is that the stem 

and loop, the regions with well-defined structures, are often the same between pri- and 

pre-miRNA. The other, more practical reason is that many of the currently available 

annotation resources do not distinguish between them. 

I observed miRNAs with low score density as well as structures that seemed internally 

inconsistent, for example, hairpins in which one strand of the stem appeared highly 
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structured and the other strand appeared unstructured. I speculated that these results 

might be caused by a mixture of pri- pre- and mature miRNAs in the cell leading to 

structural ambiguity. 

Fortunately, I had access to data from an experiment performed in the model plant 

Arabidopsis thaliana in which RNA had been purified from nuclei. Plant pri- and pre-

miRNAs are processed in the nucleus and exported to the cytosol as mature miRNAs, 

so I reasoned that nuclear miRNAs would be enriched for the pri- and pre- forms. I 

computed structure scores from this experimentally determined data sets and loaded 

them into the database. In Chapter 2, I discussed the structure score patterns of 

miRNAs from these data. Briefly, I found scores consistent with stem loops in most of 

the miRNAs with high score coverage and I showed some examples. I found that, even 

when score coverage was incomplete, I could interpolate missing scores and still 

observe a stem loop pattern. 

This recurring structural pattern is an important link between RNA secondary structure 

and smRNAs and it also points toward RNA cleavage. After all, miRNAs are processed 

into their mature form through cleavage events. Additionally, in plants, many miRNA are 

used to target transcripts for cleavage. Just as our lab has been interested in developing 

tools to study RNA structure genome-wide, we have also worked to develop a method 

for detecting cleavage and degradation using high-throughput sequencing. In this 

dissertation, I focused on the latest refinement of our technique, GMUCT 2.0. 

I described the technique in detail in Chapter 3 and an even more complete protocol is 

given in Willmann et al, 2014. Briefly, GMUCT 2.0 exploits a useful fact of RNA 

chemistry. Specifically, transcripts that have been cleaved, or are undergoing 5' to 3' 
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degradation, have a free monophosphate on their 5' ends. Contrast this with intact 

transcripts, which have a 7-methylguanylate cap in that position. GMUCT 2.0 creates 

sequencing libraries from the pool of molecules with free 5' monophosphates. The 

resulting libraries, when aligned, reveal transcripts undergoing degradation, as well as 

cleavage sites, including those induced by miRNAs incorporated into an RNA-induced 

silencing complex. 

From my analyses, I found that GMUCT 2.0 expression results correlated highly with 

mRNA-seq expression for most Arabidopsis transcripts. This makes sense given that a 

transcript must be expressed in order to be degraded. It also opens up the possibility of 

normalizing GMUCT 2.0 expression to mRNA-seq expression to identify highly degraded 

transcripts. The profiles of transcripts in our GMUCT libraries had a 3' bias, possibly 

hinting at the kinetics of degradation. 

I also inspected the targets of miRNAs. For both Arabidopsis and human tissue culture 

cells, I created a meta-transcript profile by normalizing and combining expression across 

a list of miRNA target sites. In Arabidopsis, I found the meta-transcript profile had a 

sharp peak in the center of the miRNA footprint consistent with miRNA induced 

cleavage. The meta-transcripts for the human cell lines didn't show a similar peak. Again 

this agrees with all currently available data that suggests mammalian miRNAs regulate 

their target transcripts by a mechanism that does not involve cleavage, but is focused on 

translation inhibition.  

One useful consequence of GMUCT 2.0 target site peaks, at least in plants, is that they 

can be used to verify putative smRNA targeting interactions. This is one of several 

analyses that I integrated in Chapter 4. In that chapter, I discussed a class of 
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polymerases that use RNA as a template for RNA synthesis (RDRs). The Arabidopsis 

genome encodes six such enzymes. The double-stranded RNAs that they produce act 

as precursors for at least two classes of characterized siRNAs. 

I used dsRNA-seq to look for regions of the genome where double-stranded RNAs were 

being made in wild type plants but were reduced in rdr mutants. Similarly, I used 

smRNA-seq to look for smRNAs that were lost in mutants. I reasoned that regions that 

lost expression in both sequencing types, whether or not they were annotated genes, 

were likely to be RDR substrates. In this way, I compiled a list of putative targets for 

each known RDR in two tissues. 

Many of the putative substrates I identified were known, especially for the most well 

studied RDRs, which gave me confidence that the analysis was powerful enough to 

detect previously unknown substrates. I found novel substrates for each of the RDRs, 

including two γ RDRs for which no substrates are currently known. 

I was also interested in the targeting interactions of the siRNAs that rely on RDRs for 

their synthesis. I found predicted targets for the siRNAs associated with each of these 

proteins. Because some siRNAs are involved in cleavage of their targets, I integrated 

GMUCT 2.0 data into my analysis to identify which of the target sites were cleaved. I 

found many interesting examples, including some known cleavage targets as well as 

some novel ones. 

The analysis of the RDR substrates brought together aspects of all of my other projects. 

It required an understanding of RNA-secondary structure, smRNAs, and siRNA-induced 

cleavage, as well as all the tools used for building RNA-seq based pipelines. It also 
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challenged my understanding of plant biology and cell biology in general. Thus, it 

represents a microcosm of the concepts presented in this dissertation. 

 

Future Directions 

Each of the projects I discussed is still ongoing with intriguing possibilities for the future. 

The databases I described originally contained six mammalian data sets. An additional 

four were recently added for Arabidopsis. As techniques for inferring secondary structure 

continue to develop and become widespread, the available data will only grow. 

One core improvement for the future is development of the scoring methods. Every 

technique has its own distinct score formula, but they share a key oversimplification. 

Each of them represents a per-base ratio of expression. However, none of them take 

into account the magnitude of expression. As a thought experiment, consider the 

following ratios where the numerator represents evidence that a given nucleotide is 

paired and the denominator is evidence that it is unpaired: 1/4 vs 1000/4000.  

It's clear that the latter contains more information than the former, however under all of 

the current scoring methods the two would produce similar scores. Each of the current 

formulas is a reasonable approach at converting sequencing reads to interpretable 

secondary structure information, especially since the techniques are relatively new.  

It would have been premature to make assumptions about the properties of the data. I 

discussed in Chapter 2 how strikingly different the score distributions are for the four 
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techniques. However, as more data is generated it will be important to develop a 

concept of variance for the scores so that they can be weighted by confidence. 

Even without making the score calculations more sophisticated, it's clear that the 

database is useful in its current form. One future direction is to simply browse it for 

features of interest. I found that it can visualize short hairpins and I found that miRNA 

precursors in particular have a characteristic pattern, especially when missing scores are 

interpolated. An appealing application of this is to encode this pattern formally so that 

pri- and pre-miRNAs can be detected algorithmically. 

This would add an additional layer of data for miRNA detection software that currently 

detects putative miRNAs using sequence alone. It would also benefit users of miRNA 

databases such as miRBase who are unsure of miRNA entries supported only by in 

silico evidence. Currently there is only one dataset for one organism with structure 

scores from nuclei. However, as such experiments continue in the Gregory lab and in 

others, algorithm development for structure-based miRNA detection will become a real 

possibility. 

Related to this is the determination of pri- and pre-miRNA structures. I discussed in 

Chapter 2 how the structures recorded in miRBase are often determined by in silico 

folding algorithms, which use minimum free energy to maximize structure likelihood. It 

has been shown that, at least for some famous miRNAs, that these structures are not 

always perfectly correct. I suspect it will be possible to update in silico structures using 

empirical scores from the database. I proposed a method for doing this. However more 

work needs to be done to validate and, most likely, refine these methods. 
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There is also additional work to do on the Arabidopsis RDR project. I showed how data 

integration can be used to track RDR substrates from their precursors to their 

biosynthesis to their eventual function as mature siRNAs by integrating dsRNA-seq, 

smRNA-seq, and GMUCT 2.0 data. As I've worked on various iterations of this project 

I've been interested in making it increasingly automated. In its current state, it still 

requires an expert user to run many of the steps.  

As I, and others, continue to develop the pipeline it will evolve into a tool that can be 

used without computational training. This will enable researchers to probe for substrates 

of all RDRs across multiple tissues and organisms. Ultimately the goal is to determine 

what makes a transcript a suitable RDR substrate. Given the complexity of known 

mechanisms, this will likely require additional analytic steps along with careful 

experimental validation. Internal validation with the known substrates I explored here will 

continue to be a valuable metric for technical improvement. 
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