10 research outputs found

    A theoretical study of the stability of disulfide bridges in various β-sheet structures of protein segment models

    Get PDF
    Electron structure calculations are used to explore stabilization effects of disulfide bridges in a (Ala–Cys–Ala–Cys–Ala)2 β-sheet model both in the parallel and the anti-parallel (103142 and 143102) arrangements. Stabilities were calculated using a redox reaction involving a weak oxidizing agent (1,4-benzoquinone). The results show that both inter- and intra-strand disulfide SS-bridges stabilize the β-sheet backbone fold. However, inter-strand SS-bridges give more stability than their intra-strand counterparts. For both single and double disulfide linked conformations, stabilization was larger for the parallel than for the anti-parallel β-sheet arrangements

    Substoichiometric inhibition of transthyretin misfolding by immune-targeting sparsely populated misfolding intermediates : a potential diagnostic and therapeutic for TTR amyloidoses

    No full text
    Wild-type and mutant transthyretin (TTR) can misfold and deposit in the heart, peripheral nerves, and other sites causing amyloid disease. Pharmacological chaperones, Tafamidis (R) and diflunisal, inhibit TTR misfolding by stabilizing native tetrameric TTR; however, their minimal effective concentration is in the micromolar range. By immune-targeting sparsely populated TTR misfolding intermediates (i.e. monomers), we achieved fibril inhibition at substoichiometric concentrations. We developed an antibody (misTTR) that targets TTR residues 89-97, an epitope buried in the tetramer but exposed in the monomer. Nanomolar misTTR inhibits fibrillogenesis of misfolded TTR under micromolar concentrations. Pan-specific TTR antibodies do not possess such fibril inhibiting properties. We show that selective targeting of misfolding intermediates is an alternative to native state stabilization and requires substoichiometric concentrations. MisTTR or its derivative may have both diagnostic and therapeutic potential

    Novel conformation-specific monoclonal antibodies against amyloidogenic forms of transthyretin

    No full text
    <p><i>Introduction</i>: Transthyretin amyloidosis (ATTR amyloidosis) is caused by the misfolding and deposition of the transthyretin (TTR) protein and results in progressive multi-organ dysfunction. TTR epitopes exposed by dissociation and misfolding are targets for immunotherapeutic antibodies. We developed and characterized antibodies that selectively bound to misfolded, non-native conformations of TTR.</p> <p><i>Methods</i>: Antibody clones were generated by immunizing mice with an antigenic peptide comprising a cryptotope within the TTR sequence and screened for specific binding to non-native TTR conformations, suppression of <i>in vitro</i> TTR fibrillogenesis, promotion of antibody-dependent phagocytic uptake of mis-folded TTR and specific immunolabeling of ATTR amyloidosis patient-derived tissue.</p> <p><i>Results</i>: Four identified monoclonal antibodies were characterized. These antibodies selectively bound the target epitope on monomeric and non-native misfolded forms of TTR and strongly suppressed TTR fibril formation <i>in vitro</i>. These antibodies bound fluorescently tagged aggregated TTR, targeting it for phagocytic uptake by macrophage THP-1 cells, and amyloid-positive TTR deposits in heart tissue from patients with ATTR amyloidosis, but did not bind to other types of amyloid deposits or normal tissue.</p> <p><i>Conclusions</i>: Conformation-specific anti-TTR antibodies selectively bind amyloidogenic but not native TTR. These novel antibodies may be therapeutically useful in preventing deposition and promoting clearance of TTR amyloid and in diagnosing TTR amyloidosis.</p

    MiR-30 promotes fatty acid beta-oxidation and endothelial cell dysfunction and is a circulating biomarker of coronary microvascular dysfunction in pre-clinical models of diabetes.

    Full text link
    [en] BACKGROUND: Type 2 diabetes (T2D) is associated with coronary microvascular dysfunction, which is thought to contribute to compromised diastolic function, ultimately culminating in heart failure with preserved ejection fraction (HFpEF). The molecular mechanisms remain incompletely understood, and no early diagnostics are available. We sought to gain insight into biomarkers and potential mechanisms of microvascular dysfunction in obese mouse (db/db) and lean rat (Goto-Kakizaki) pre-clinical models of T2D-associated diastolic dysfunction. METHODS: The microRNA (miRNA) content of circulating extracellular vesicles (EVs) was assessed in T2D models to identify biomarkers of coronary microvascular dysfunction/rarefaction. The potential source of circulating EV-encapsulated miRNAs was determined, and the mechanisms of induction and the function of candidate miRNAs were assessed in endothelial cells (ECs). RESULTS: We found an increase in miR-30d-5p and miR-30e-5p in circulating EVs that coincided with indices of coronary microvascular EC dysfunction (i.e., markers of oxidative stress, DNA damage/senescence) and rarefaction, and preceded echocardiographic evidence of diastolic dysfunction. These miRNAs may serve as biomarkers of coronary microvascular dysfunction as they are upregulated in ECs of the left ventricle of the heart, but not other organs, in db/db mice. Furthermore, the miR-30 family is secreted in EVs from senescent ECs in culture, and ECs with senescent-like characteristics are present in the db/db heart. Assessment of miR-30 target pathways revealed a network of genes involved in fatty acid biosynthesis and metabolism. Over-expression of miR-30e in cultured ECs increased fatty acid β-oxidation and the production of reactive oxygen species and lipid peroxidation, while inhibiting the miR-30 family decreased fatty acid β-oxidation. Additionally, miR-30e over-expression synergized with fatty acid exposure to down-regulate the expression of eNOS, a key regulator of microvascular and cardiomyocyte function. Finally, knock-down of the miR-30 family in db/db mice decreased markers of oxidative stress and DNA damage/senescence in the microvascular endothelium. CONCLUSIONS: MiR-30d/e represent early biomarkers and potential therapeutic targets that are indicative of the development of diastolic dysfunction and may reflect altered EC fatty acid metabolism and microvascular dysfunction in the diabetic heart
    corecore