378 research outputs found
A Synopsis of Global Mapping of Freshwater Habitats and Biodiversity: Implications for Conservation
Accurately mapping freshwater habitats and biodiversity at high-resolutions across the globe is essential for assessing the vulnerability and threats to freshwater organisms and prioritizing conservation efforts. Since the 2000s, extensive efforts have been devoted to mapping global freshwater habitats (rivers, lakes, and wetlands), the spatial representation of which has changed dramatically over time with new geospatial data products and improved remote sensing technologies. Some of these mapping efforts, however, are still coarse representations of actual conditions. Likewise, the resolution and scope of global freshwater biodiversity compilation efforts have also increased, but are yet to mirror the spatial resolution and fidelity of mapped freshwater environments. In our synopsis, we find that efforts to map freshwater habitats have been conducted independently of those for freshwater biodiversity; subsequently, there is little congruence in the spatial representation and resolution of the two efforts. We suggest that global species distribution models are needed to fill this information gap; however, limiting data on habitat characteristics at scales that complement freshwater habitats has prohibited global high-resolution biogeography efforts. Emerging research trends, such as mapping habitat alteration in freshwater ecosystems and trait biogeography, show great promise in mechanistically linking global anthropogenic stressors to freshwater biodiversity decline and extinction risk
No role for estrogen receptor 1 gene intron 1 Pvu II and exon 4 C325G polymorphisms in migraine susceptibility
BACKGROUND: We have previously reported an association between the estrogen receptor 1 (ESR1) gene exon 8 G594A polymorphism and migraine susceptibility in two independent Australian cohorts. In this paper we report results of analysis of two further single nucleotide polymorphisms (SNPs) in the ESR1 gene in the same study group, the T/C Pvu II SNP in intron 1 and the C325G SNP in exon 4, as well as results of linkage disequilibrium (LD) analysis on these markers. METHODS: We investigated these variants by case-control association analysis in a cohort of 240 migraineurs and 240 matched controls. The SNPs were genotyped using specific restriction enzyme assays. Results were analysed using contingency table methods incorporating the chi-squared statistic. LD results are presented as D' statistics with associated P values. RESULTS: We found no evidence for association of the Pvu II T/C polymorphism and the C325G polymorphism and migraine susceptibility and no evidence for LD between these two SNPs and the previously implicated exon 8 G594A marker. CONCLUSION: We have found no role for the polymorphisms in intron 1 and exon 4 with migraine susceptibility. To further investigate our previously implicated exon 8 marker, we suggest the need for studies with a high density of polymorphisms be undertaken, with particular focus on markers in LD with the exon 8 marker
Multimodal MRI can identify perfusion and metabolic changes in the invasive margin of glioblastomas.
PURPOSE: To use perfusion and magnetic resonance (MR) spectroscopy to compare the diffusion tensor imaging (DTI)-defined invasive and noninvasive regions. Invasion of normal brain is a cardinal feature of glioblastomas (GBM) and a major cause of treatment failure. DTI can identify invasive regions. MATERIALS AND METHODS: In all, 50 GBM patients were imaged preoperatively at 3T with anatomic sequences, DTI, dynamic susceptibility perfusion MR (DSCI), and multivoxel spectroscopy. The DTI and DSCI data were coregistered to the spectroscopy data and regions of interest (ROIs) were made in the invasive (determined by DTI), noninvasive regions, and normal brain. Values of relative cerebral blood volume (rCBV), N-acetyl aspartate (NAA), myoinositol (mI), total choline (Cho), and glutamate + glutamine (Glx) normalized to creatine (Cr) and Cho/NAA were measured at each ROI. RESULTS: Invasive regions showed significant increases in rCBV, suggesting angiogenesis (invasive rCBV 1.64 [95% confidence interval, CI: 1.5-1.76] vs. noninvasive 1.14 [1.09-1.18]; P < 0.001), Cho/Cr (invasive 0.42 [0.38-0.46] vs. noninvasive 0.35 [0.31-0.38]; P = 0.02) and Cho/NAA (invasive 0.54 [0.41-0.68] vs. noninvasive 0.37 [0.29-0.45]; P = < 0.03), suggesting proliferation, and Glx/Cr (invasive 1.54 [1.27-1.82] vs. noninvasive 1.3 [1.13-1.47]; P = 0.028), suggesting glutamate release; and a significantly reduced NAA/Cr (invasive 0.95 [0.85-1.05] vs. noninvasive 1.19 [1.06-1.31]; P = 0.008). The mI/Cr was not different between the three ROIs (invasive 1.2 [0.99-1.41] vs. noninvasive 1.3 [1.14-1.46]; P = 0.68). In the noninvasive regions, the values were not different from normal brain. CONCLUSION: Combining DTI to identify the invasive region with perfusion and spectroscopy, we can identify changes in invasive regions not seen in noninvasive regions.This study was funded from a National Institutes of Health Research Clinician Scientist FellowshipThis is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/jmri.2499
Incorporating expression data in metabolic modeling: a case study of lactate dehydrogenase
Integrating biological information from different sources to understand
cellular processes is an important problem in systems biology. We use data from
mRNA expression arrays and chemical kinetics to formulate a metabolic model
relevant to K562 erythroleukemia cells. MAP kinase pathway activation alters
the expression of metabolic enzymes in K562 cells. Our array data show changes
in expression of lactate dehydrogenase (LDH) isoforms after treatment with
phorbol 12-myristate 13-acetate (PMA), which activates MAP kinase signaling. We
model the change in lactate production which occurs when the MAP kinase pathway
is activated, using a non-equilibrium, chemical-kinetic model of homolactic
fermentation. In particular, we examine the role of LDH isoforms, which
catalyze the conversion of pyruvate to lactate. Changes in the isoform ratio
are not the primary determinant of the production of lactate. Rather, the total
concentration of LDH controls the lactate concentration.Comment: In press, Journal of Theoretical Biology. 27 pages, 9 figure
Prevalence and risk factors for malignant nodal involvement in early esophago-gastric adenocarcinoma:Results from the multicenter retrospective CONGRESS study (endosCopic resectiON, esophaGectomy or gastrectomy foR Early eSophagogastric cancerS)
Objective: The aim of this study was to quantify LNM risk and outcomes following treatment of early esophago-gastric (EG) adenocarcinoma.Background: The standard of care for early T1N0 EG cancer is endoscopic resection (ER). Radical surgical resection is recommended for patients perceived to be at risk of lymph node metastasis (LNM). Current models to select organ-preserving vs. surgical treatment are inconsistent.Methods: CONGRESS is a UK-based multicentre retrospective cohort study. Patients diagnosed with clinical or pathological T1N0 EG adenocarcinoma from 2015-2022 were included. Outcomes and rates of LNM were assessed. Cox regression was performed to assess the impact of prognostic and treatment factors on overall survival.Results: 1,601 patients from 26 centres were included, with median follow-up 32 months(IQR 14-53). 1285/1612(80.3%) underwent ER, 497/1601(31.0%) underwent surgery. Overall rate of LNM was 13.5%. On ER staging, tumour depth (T1bsm2-3 17.6% vs. T1a 7.1%), lymphovascular invasion (17.2% vs. 12.6%), or signet cells (28.6% vs. 13.0%) were associated with LNM. In multivariable regression analysis, these were not significantly associated with LNM rates or survival. Adjusting for demographic and tumour variables, surgery after ER was associated with significant survival benefit, HR 0.33(0.15-0.77),P=0.010.Conclusion: This large multicentre dataset suggests that early EG adenocarcinoma is associated with significant risk of LNM. This data is representative of current real clinical practice with ER-based staging, and suggests previously held beliefs regarding reliability of predictive factors for LNM may need to be reconsidered. Further research to identify patients who may benefit from organ-preserving vs. surgical treatment is urgently required.</p
A novel method for quantification of gemcitabine and its metabolites 2',2'-difluorodeoxyuridine and gemcitabine triphosphate in tumour tissue by LC-MS/MS: comparison with (19)F NMR spectroscopy.
PURPOSE: To develop a sensitive analytical method to quantify gemcitabine (2',2'-difluorodeoxycytidine, dFdC) and its metabolites 2',2'-difluorodeoxyuridine (dFdU) and 2',2'-difluorodeoxycytidine-5'-triphosphate (dFdCTP) simultaneously from tumour tissue. METHODS: Pancreatic ductal adenocarcinoma tumour tissue from genetically engineered mouse models of pancreatic cancer (KP ( FL/FL ) C and KP ( R172H/+) C) was collected after dosing the mice with gemcitabine. (19)F NMR spectroscopy and LC-MS/MS protocols were optimised to detect gemcitabine and its metabolites in homogenates of the tumour tissue. RESULTS: A (19)F NMR protocol was developed, which was capable of distinguishing the three analytes in tumour homogenates. However, it required at least 100Â mg of the tissue in question and a long acquisition time per sample, making it impractical for use in large PK/PD studies or clinical trials. The LC-MS/MS protocol was developed using porous graphitic carbon to separate the analytes, enabling simultaneous detection of all three analytes from as little as 10Â mg of tissue, with a sensitivity for dFdCTP of 0.2Â ng/mg tissue. Multiple pieces of tissue from single tumours were analysed, showing little intra-tumour variation in the concentrations of dFdC or dFdU (both intra- and extra-cellular). Intra-tumoural variation was observed in the concentration of dFdCTP, an intra-cellular metabolite, which may reflect regions of different cellularity within a tumour. CONCLUSION: We have developed a sensitive LC-MS/MS method capable of quantifying gemcitabine, dFdU and dFdCTP in pancreatic tumour tissue. The requirement for only 10Â mg of tissue enables this protocol to be used to analyse multiple areas from a single tumour and to spare tissue for additional pharmacodynamic assays
A new marker based on the avian spindlin gene that is able to sex most birds, including species problematic to sex with CHD markers
We have developed a new marker (Z43B) that can be successfully used to identify the sex of most birds (69%), including species difficult or impossible to sex with other markers. We utilized the zebra finch Taeniopygia guttata EST microsatellite sequence (CK309496) which displays sequence homology to the 5′ untranslated region (UTR) of the avian spindlin gene. This gene is known to be present on the Z and W chromosomes. To maximize cross-species utility, the primer set was designed from a consensus sequence created from homologs of CK309496 that were isolated from multiple distantly related species. Both the forward and reverse primer sequences were 100% identical to 14 avian species, including the Z chromosome of eight species and the chicken Gallus gallus W chromosome, as well as the saltwater crocodile Crocodylus porosus. The Z43B primer set was assessed by genotyping individuals of known sex belonging to 61 non-ratite species and a single ratite. The Z and W amplicons differed in size making it possible to distinguish between males (ZZ) and females (ZW) for the majority (69%) of non-ratite species tested, comprising 10 orders of birds. We predict that this marker will be useful for obtaining sex-typing data for ca 6,869 species of birds (69% of non-ratites but not galliforms). A wide range of species could be sex-typed including passerines, shorebirds, eagles, falcons, bee-eaters, cranes, shags, parrots, penguins, ducks, and a ratite species, the brown kiwi, Apteryx australis. Those species sexed include species impossible or problematic to sex-type with other markers (magpie, albatross, petrel, eagle, falcon, crane, and penguin species)
The metabolic regimes of 356 rivers in the United States
A national-scale quantification of metabolic energy flow in streams and rivers can improve understanding of the temporal dynamics of in-stream activity, links between energy cycling and ecosystem services, and the effects of human activities on aquatic metabolism. The two dominant terms in aquatic metabolism, gross primary production (GPP) and aerobic respiration (ER), have recently become practical to estimate for many sites due to improved modeling approaches and the availability of requisite model inputs in public datasets. We assembled inputs from the U.S. Geological Survey and National Aeronautics and Space Administration for October 2007 to January 2017. We then ran models to estimate daily GPP, ER, and the gas exchange rate coefficient for 356 streams and rivers across the continental United States. We also gathered potential explanatory variables and spatial information for cross-referencing this dataset with other datasets of watershed characteristics. This dataset offers a first national assessment of many-day time series of metabolic rates for up to 9 years per site, with a total of 490,907 site-days of estimates.We thank Jill Baron and the USGS Powell Center for financial support for this collaborative effort (Powell Center Working Group title: "Continental-scale overview of stream primary productivity, its links to water quality, and consequences for aquatic carbon biogeochemistry"). Additional financial support came from the USGS NAWQA program and Office of Water Information. NSF grants DEB-1146283 and EF1442501 partially supported ROH. A post-doctoral grant from the Basque Government partially supported MA. NAG was supported by the U.S. Department of Energy's Office of Science, Biological and Environmental Research. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. Leah Colasuonno provided expert logistical support of our working group meetings. The developers of USGS ScienceBase were very helpful both in hosting this dataset and in responding to our requests. Randy Hunt and Mike Fienen of the USGS Wisconsin Modeling Center graciously provided access to their HTCondor cluster. Mike Vlah provided detailed and insightful reviews of the data and metadata
Hydrological Feedbacks on Peatland CH4 Emission Under Warming and Elevated CO2: A Modeling Study
Peatland carbon cycling is critical for the land–atmosphere exchange of greenhouse gases, particularly under changing environments. Warming and elevated atmospheric carbon dioxide (eCO2) concentrations directly enhance peatland methane (CH4) emission, and indirectly affect CH4 processes by altering hydrological conditions. An ecosystem model ELM-SPRUCE, the land model of the E3SM model, was used to understand the hydrological feedback mechanisms on CH4 emission in a temperate peatland under a warming gradient and eCO2 treatments. We found that the water table level was a critical regulator of hydrological feedbacks that affect peatland CH4 dynamics; the simulated water table levels dropped as warming intensified but slightly increased under eCO2. Evaporation and vegetation transpiration determined the water table level in peatland ecosystems. Although warming significantly stimulated CH4 emission, the hydrological feedbacks leading to a reduced water table mitigated the stimulating effects of warming on CH4 emission. The hydrological feedback for eCO2 effects was weak. The comparison between modeled results with data from a field experiment and a global synthesis of observations supports the model simulation of hydrological feedbacks in projecting CH4 flux under warming and eCO2. The ELM-SPRUCE model showed relatively small parameter-induced uncertainties on hydrological variables and their impacts on CH4 fluxes. A sensitivity analysis confirmed a strong hydrological feedback in the first three years and the feedback diminished after four years of warming. Hydrology-moderated warming impacts on CH4 cycling suggest that the indirect effect of warming on hydrological feedbacks is fundamental for accurately projecting peatland CH4 flux under climate warming
- …