7 research outputs found

    The isolated proteolytic domain of Escherichia coli ATP-dependent protease Lon exhibits the peptidase activity

    Get PDF
    AbstractSelective protein degradation is an energy-dependent process performed by high-molecular-weight proteases. The activity of proteolytic components of these enzymes is coupled to the ATPase activity of their regulatory subunits or domains. Here, we obtained the proteolytic domain of Escherichia coli protease Lon by cloning the corresponding fragment of the lon gene in pGEX-KG, expression of the hybrid protein, and isolation of the proteolytic domain after hydrolysis of the hybrid protein with thrombin. The isolated proteolytic domain exhibited almost no activity toward protein substrates (casein) but hydrolyzed peptide substrates (melittin), thereby confirming the importance of the ATPase component for protein hydrolysis. Protease Lon and its proteolytic domain differed in the efficiency and specificity of melittin hydrolysis

    Divalent cation chelators citrate and EDTA unmask an intrinsic uncoupling pathway in isolated mitochondria.

    Get PDF
    We demonstrate a suppression of ROS production and uncoupling of mitochondria by exogenous citrate in Mg2+ free medium. Exogenous citrate suppressed H2O2 emission and depolarized mitochondria. The depolarization was paralleled by the stimulation of respiration of mitochondria. The uncoupling action of citrate was independent of the presence of sodium, potassium, or chlorine ions, and it was not mediated by the changes in permeability of the inner mitochondrial membrane to solutes. The citrate transporter was not involved in the citrate effect. Inhibitory analysis data indicated that several well described mitochondria carriers and channels (ATPase, IMAC, ADP/ATP translocase, mPTP, mKATP) were not involved in citrate's effect. Exogenous MgCl2 strongly inhibited citrate-induced depolarization. The uncoupling effect of citrate was demonstrated in rat brain, mouse brain, mouse liver, and human melanoma cells mitochondria. We interpreted the data as an evidence to the existence of a hitherto undescribed putative inner mitochondrial membrane channel that is regulated by extramitochondrial Mg2+ or other divalent cations
    corecore