246 research outputs found
Wetlands In a Changing Climate: Science, Policy and Management
Part 1 of this review synthesizes recent research on status and climate vulnerability of freshwater and saltwater wetlands, and their contribution to addressing climate change (carbon cycle, adaptation, resilience). Peatlands and vegetated coastal wetlands are among the most carbon rich sinks on the planet sequestering approximately as much carbon as do global forest ecosystems. Estimates of the consequences of rising temperature on current wetland carbon storage and future carbon sequestration potential are summarized. We also demonstrate the need to prevent drying of wetlands and thawing of permafrost by disturbances and rising temperatures to protect wetland carbon stores and climate adaptation/resiliency ecosystem services. Preventing further wetland loss is found to be important in limiting future emissions to meet climate goals, but is seldom considered. In Part 2, the paper explores the policy and management realm from international to national, subnational and local levels to identify strategies and policies reflecting an integrated understanding of both wetland and climate change science. Specific recommendations are made to capture synergies between wetlands and carbon cycle management, adaptation and resiliency to further enable researchers, policy makers and practitioners to protect wetland carbon and climate adaptation/resiliency ecosystem services
Diabetes Mellitus and Mortality after Acute Coronary Syndrome as a First or Recurrent Cardiovascular Event
Diabetes Mellitus (DM) is associated with adverse cardiovascular prognosis. However, the risk associated with DM may vary between individuals according to their overall cardiovascular risk burden. Therefore, we aimed to determine whether DM is associated with poor outcome in patients presenting with Acute Coronary Syndrome (ACS) according to the index episode being a first or recurrent cardiovascular event.We conducted a retrospective analysis of a prospective cohort study involving 2499 consecutively admitted patients with confirmed ACS in 11 UK hospitals during 2003. Usual care was provided for all participants. Demographic factors, co-morbidity and treatment (during admission and at discharge) factors were recorded. The primary outcome was all cause mortality (median 2 year follow up), compared for cohorts with and without DM according to their prior cardiovascular disease (CVD) disease status. Adjusted analyses were performed with Cox proportional hazards regression analysis. Within the entire cohort, DM was associated with an unadjusted 45% increase in mortality. However, in patients free of a history of CVD, mortality of those with and without DM was similar (18.8% and 19.7% respectively; p = 0.74). In the group with CVD, mortality of patients with DM was significantly higher than those without DM (46.7% and 33.2% respectively; p<0.001). The age and sex adjusted interaction between DM and CVD in predicting mortality was highly significant (p = 0.002) and persisted after accounting for comorbidities and treatment factors (p = 0.006). Of patients free of CVD, DM was associated with smaller elevation of Troponin I (p<0.001). However in patients with pre-existing CVD Troponin I was similar (p = 0.992).DM is only associated with worse outcome after ACS in patients with a pre-existing history of CVD. Differences in the severity of myocyte necrosis may account for this. Further investigation is required, though our findings suggest that aggressive primary prevention of CVD in patients with DM may have beneficially modified their first presentation with (and mortality after) ACS
Numerical study of effect of elastomeric stress absorbers on stress reduction in bone-dental implant interface
Objective This paper focused on optimal stress distribution in the mandibular bone surrounding a dental implant and is devoted to the development of a modified Osteoplant® implant type in order to minimize stress concentration in the bone-implant interface. Material and Methods This study investigated 0.4 mm thick layers of two elastomeric stress barriers incorporated into the dental implant using 3-D finite element analysis. Results Overall, this proposed implant provoked lower load transfer in bone-implant interface due to the effect of the elastomers as stress absorbers. The stress level in the bone was reduced between 28% and 42% for three load cases: 75 N, 60 N and 27 N in corono-apical, linguo-buccal and disto-mesial direction, respectively. Conclusion The proposed model provided an acceptable solution for load transfer reduction to the mandible. This investigation also permitted to choose how to incorporate two elastomers into the Osteoplant® implant system
A pilot study of a phenomenological model of adipogenesis in maturing adipocytes using Cahn–Hilliard theory
We consider the accumulation and formation of lipid droplets in an adipocyte cell. The process incorporates adipose nucleation (adipogenesis) and growth. At later stages, there will be merging of droplets and growth of larger droplets at the expense of the smaller droplets, which will essentially undergo lipolysis. The process is modeled by the use of the Cahn–Hilliard equation, which is mass-conserving and allows the formation of secondary phases in the context of spinodal decomposition. The volume of fluid (VOF) method is used to determine the total area that is occupied by the lipids in a given cross section. Further, we present an algorithm, applicable to all kinds of grids (structured or unstructured) in two spatial dimensions, to count the number of lipid droplets and the portion of the domain of computation that is occupied by the lipid droplets as a function of time during the process. The results are preliminary and are validated from a qualitative point using experiments carried out on cell cultures. It turns out that the Cahn–Hilliard theory can model many of the features during adipogenesis qualitatively
p53 overexpression is associated with cytoreduction and response to chemotherapy in ovarian cancer
The aim of this study was to assess the association of p53 status with primary cytoreduction, response to chemotherapy and outcome in stage III–IV primary ovarian cancer patients. Immunohistochemical analysis of p53 was performed on formalin-fixed, paraffin-embedded specimens from 168 primary ovarian carcinomas by using the DO-7 monoclonal antibody. p53 nuclear positivity was found in 84 out of 162 (52%) malignant tumours. A higher percentage of p53 nuclear positivity was observed in patients with advanced stage of disease than in stage I–II (57% vs 23% respectively; P = 0.0022) and in poorly differentiated versus well/moderately differentiated tumours (59% vs 32% respectively; P = 0.0038). The multivariate analysis aimed to investigate the association of FIGO stage, grade and p53 status with primary cytoreduction in 136 stage III–IV patients showed that stage IV disease may influence the possibility to perform primary cytoreduction in ovarian cancer patients. p53-positivity also maintained a trend to be associated with poor chance of cytoreduction. In patients who underwent pathologic assessment of response, cases who did not respond to chemotherapy were much more frequently p53-positive than p53-negative (86% vs 14% respectively; P = 0.012). Moreover, patients with stage III disease and < 2-cm residual tumour were more likely to respond to treatment. In multivariate analysis, FIGO stage and p53 expression were independently correlated with pathologic response to chemotherapy. Time to progression and survival rates were shown not to be different in p53-positive versus p53-negative patients. © 1999 Cancer Research Campaig
Control of somatosensory cortical processing by thalamic posterior medial nucleus: A new role of thalamus in cortical function
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Current knowledge of thalamocortical interaction comes mainly from studying lemniscal thalamic systems. Less is known about paralemniscal thalamic nuclei function. In the vibrissae system, the posterior medial nucleus (POm) is the corresponding paralemniscal nucleus. POm neurons project to L1 and L5A of the primary somatosensory cortex (S1) in the rat brain. It is known that L1 modifies sensory-evoked responses through control of intracortical excitability suggesting that L1 exerts an influence on whisker responses. Therefore, thalamocortical pathways targeting L1 could modulate cortical firing. Here, using a combination of electrophysiology and pharmacology in vivo, we have sought to determine how POm influences cortical processing. In our experiments, single unit recordings performed in urethane- anesthetized rats showed that POm imposes precise control on the magnitude and duration of supra- and infragranular barrel cortex whisker responses. Our findings demonstrated that L1 inputs from POm imposed a time and intensity dependent regulation on cortical sensory processing. Moreover, we found that blocking L1 GABAergic inhibition or blocking P/Q-type Ca2+ channels in L1 prevents POm adjustment of whisker responses in the barrel cortex. Additionally, we found that POm was also controlling the sensory processing in S2 and this regulation was modulated by corticofugal activity from L5 in S1. Taken together, our data demonstrate the determinant role exerted by the POm in the adjustment of somatosensory cortical processing and in the regulation of cortical processing between S1 and S2. We propose that this adjustment could be a thalamocortical gain regulation mechanism also present in the processing of information between cortical areas.This work was supported by a grant from Ministerio de Economia y Competitividad (BFU2012-
36107
Summer warming explains widespread but not uniform greening in the Arctic tundra biome
Arctic warming can influence tundra ecosystem function with consequences for climate feedbacks, wildlife and human communities. Yet ecological change across the Arctic tundra biome remains poorly quantified due to field measurement limitations and reliance on coarse-resolution satellite data. Here, we assess decadal changes in Arctic tundra greenness using time series from the 30 m resolution Landsat satellites. From 1985 to 2016 tundra greenness increased (greening) at ~37.3% of sampling sites and decreased (browning) at ~4.7% of sampling sites. Greening occurred most often at warm sampling sites with increased summer air temperature, soil temperature, and soil moisture, while browning occurred most often at cold sampling sites that cooled and dried. Tundra greenness was positively correlated with graminoid, shrub, and ecosystem productivity measured at field sites. Our results support the hypothesis that summer warming stimulated plant productivity across much, but not all, of the Arctic tundra biome during recent decades
Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009
Insulin resistance is a hallmark of type 2 diabetes mellitus and is associated with a metabolic and cardiovascular cluster of disorders (dyslipidaemia, hypertension, obesity [especially visceral], glucose intolerance, endothelial dysfunction), each of which is an independent risk factor for cardiovascular disease (CVD). Multiple prospective studies have documented an association between insulin resistance and accelerated CVD in patients with type 2 diabetes, as well as in non-diabetic individuals. The molecular causes of insulin resistance, i.e. impaired insulin signalling through the phosphoinositol-3 kinase pathway with intact signalling through the mitogen-activated protein kinase pathway, are responsible for the impairment in insulin-stimulated glucose metabolism and contribute to the accelerated rate of CVD in type 2 diabetes patients. The current epidemic of diabetes is being driven by the obesity epidemic, which represents a state of tissue fat overload. Accumulation of toxic lipid metabolites (fatty acyl CoA, diacylglycerol, ceramide) in muscle, liver, adipocytes, beta cells and arterial tissues contributes to insulin resistance, beta cell dysfunction and accelerated atherosclerosis, respectively, in type 2 diabetes. Treatment with thiazolidinediones mobilises fat out of tissues, leading to enhanced insulin sensitivity, improved beta cell function and decreased atherogenesis. Insulin resistance and lipotoxicity represent the missing links (beyond the classical cardiovascular risk factors) that help explain the accelerated rate of CVD in type 2 diabetic patients
- …