239 research outputs found

    Impact of climate-indicators on continental-scale potential groundwater recharge in Africa

    Get PDF
    In the last decades, human activity has been contributing to climate change that is closely associated with an increase in temperatures, increase in evaporation, intensification of extreme dry and wet rainfall events, and widespread melting of snow and ice. Understanding the intricate linkage between climate warming and the hydrological cycle is crucial for sustainable management of groundwater resources, especially in a vulnerable continent like Africa. This study investigates the relationship between climate-change drivers and potential groundwater recharge (PGR) patterns across Africa for a long-term record (1960–2010). Water-balance components were simulated by using the PCR-GLOBWB model and were reproduced in both gridded maps and latitudinal trends that vary in space with minima on the Tropics and maxima around the Equator. Statistical correlations between temperature, storm occurrences, drought, and PGR were examined in six climatic regions of Africa. Surprisingly, different effects of climate-change controls on PGR were detected as a function of latitude in the last three decades (1980–2010). Temporal trends observed in the Northern Hemisphere of Africa reveal that the increase in temperature is significantly correlated to the decline of PGR, especially in the Northern Equatorial Africa. The climate indicators considered in this study were unable to explain the alarming negative trend of PGR observed in the Sahelian region, even though the Standardized Precipitation-Evapotranspiration Index (SPEI) values report a 15% drought stress. On the other hand, increases in temperature have not been detected in the Southern Hemisphere of Africa, where increasing frequency of storm occurrences determine a rise of PGR, particularly in southern Africa. Time analysis highlights a strong seasonality effect while PGR is in-phase with rainfall patterns in the summer (Northern Hemisphere) and winter (Southern Hemisphere) and out-of-phase during the fall season. This study helps to elucidate the mechanism of the processes influencing groundwater resources in six climatic zones of Africa, even though modeling results need to be validated more extensively with direct measurements in future studies. This article is protected by copyright. All rights reserved

    Analysis of Groundwater Recharge in Mongolian Drylands Using Composite Vadose Zone Modeling

    Get PDF
    Knowledge of groundwater recharge (GR) is important for the effective management of water resources under semi-arid continental climates. Unfortunately, studies and data in Mongolia are limited due to the constraints in funding and lack of research infrastructures. Currently, the wide accessibility of freely available global-scale digital datasets of physical and chemical soil properties, weather data, vegetation characteristics, and depths to the water table offers new tools and basic information that can support low-cost physically based and process-oriented models. Estimates of GR over 41 study sites in Mongolia were obtained using HYDRUS-1D in a 2-m-thick soil profile with root depths of either 0.30 or 0.97 m by exploiting the daily precipitation and biome-specific potential evapotranspiration values. The GR simulated by HYDRUS-1D arrives at the water table and becomes the actual GR with a lag time that has been calculated using a simplified form of the Richards equation and a traveling wave model. The mean annual precipitation ranges from 57 to 316 mm year−1, and on average about 95% of it is lost by mean annual actual evapotranspiration. In the steppe region, the vegetation cover induces higher-than-normal actual transpiration losses and consequently lower GR. The mean annual GR rates span between 0.3 and 12.0 mm year−1, while travel times range between 4 and 558 years. Model prediction uncertainty was quantified by comparing actual evapotranspiration and GR with available maps and by a sensitivity assessment of lag time to the soil moisture in the deep vadose zone. The partial least squares regression (PLSR) was used to evaluate the impact of available environmental properties in explaining the 47.1 and 59.1% variability of the spatially averaged mean annual GR and travel time, respectively. The most relevant contributors are clay content, aridity index, and leaf area index for GR, and depth to the water table and silt content for the lag time. In data-poor, arid, and semi-arid regions such as Mongolia, where the mean annual GR rates are low and poorly correlated to precipitation, the ever-increasing availability of world databases and remote sensing products offers promise in estimating GR

    Erbium-doped fiber amplifier elements for structural analysis sensors

    Get PDF
    The use of erbium-doped fiber amplifiers (EDFA's) in optical fiber sensor systems for structural analysis is described. EDFA's were developed for primary applications as periodic regenerator amplifiers in long-distance fiber-based communication systems. Their in-line amplification performance also makes them attractive for optical fiber sensor systems which require long effective lengths or the synthesis of special length-dependent signal processing functions. Sensor geometries incorporating EDFA's in recirculating and multiple loop sensors are discussed. Noise and polarization birefringence are also considered, and the experimental development of system components is discussed

    Prediction of biome-specific potential evapotranspiration in mongolia under a scarcity of weather data

    Get PDF
    We propose practical guidelines to predict biome-specific potential evapotranspiration (ETp) from the knowledge of grass-reference evapotranspiration (ET0) and a crop coefficient (Kc) in Mongolia. A paucity of land-based weather data hampers use of the Penman–Monteith equation (FAO-56 PM) based on the Food and Agriculture Organization (FAO) guidelines to predict daily ET0. We found that the application of the Hargreaves equation provides ET0 estimates very similar to those from the FAO-56 PM approach. The Kc value is tabulated only for crops in the FAO-56 guidelines but is unavailable for steppe grasslands. Therefore, we proposed a new crop coefficient, Kc adj defined by (a) net solar radiation in the Gobi Desert (Kc adjD) or (b) leaf area index in the steppe region (Kc adjS) in Mongolia. The mean annual ETp obtained using our approach was compared to that obtained by FAO-56 guidelines for forages (not steppe) based on tabulated Kc values in 41 lo-cations in Mongolia. We found the differences are acceptable (RMSE of 0.40 mm d−1) in northern Mongolia under high vegetation cover but rather high (RMSE of 1.69 and 2.65 mm d−1) in central and southern Mongolia. The FAO aridity index (AI) is empirically related to the ETp/ET0 ratio. Ap-proximately 80% and 54% reduction of ET0 was reported in the Gobi Desert and in the steppe loca-tions, respectively. Our proposed Kc adj can be further improved by considering local weather data and plant phenological characteristics

    Assessing the impact of seasonal-rainfall anomalies on catchment-scale water balance components

    Get PDF
    Abstract. Although water balance components at the catchment scale are strongly related to annual rainfall, the availability of water resources in Mediterranean catchments also depends on rainfall seasonality. Observed seasonal anomalies in historical records are fairly episodic, but an increase in their frequency might exacerbate water deficit or water excess if the rainy season shortens or extends its duration, e.g., due to climate change. This study evaluates the sensitivity of water yield, evapotranspiration, and groundwater recharge to changes in rainfall seasonality by using the Soil Water Assessment Tool (SWAT) model applied to the upper Alento River catchment (UARC) in southern Italy, where a long time series of daily rainfall is available from 1920 to 2018. We compare two distinct approaches: (i) a "static" approach, where three seasonal features (namely rainy, dry, and transition fixed-duration 4-month seasons) are identified through the standardized precipitation index (SPI) and (ii) a "dynamic" approach based on a stochastic framework, where the duration of two seasons (rainy and dry seasons) varies from year to year according to a probability distribution. Seasonal anomalies occur when the transition season is replaced by the rainy or dry season in the first approach and when season duration occurs in the tails of its normal distribution in the second approach. Results are presented within a probabilistic framework. We also show that the Budyko curve is sensitive to the rainfall seasonality regime in UARC by questioning the implicit assumption of a temporal steady state between annual average dryness and the evaporative index. Although the duration of the rainy season does not exert a major control on water balance, we were able to identify season-dependent regression equations linking water yield to the dryness index in the rainy season

    Revisiting the definition of field capacity as a functional parameter in a layered agronomic soil profile beneath irrigated maize

    Get PDF
    The soil water content at the condition of field capacity (θFC) is a key parameter in irrigation scheduling and has been suggested to be determined by running a synthetic drainage experiment until the flux rate (q) at the bottom of the soil profile achieves a predefined negligible value (qFC). We question the impact of qFC on the assessment of field capacity. Moreover, calculating θFC as the integral mean of the water content profile when q is equal to qFC is strictly valid only for uniform soil profiles. By contrast, this practice is ambiguous and biased for stratified soil profiles due to the soil water content discontinuity at the layer interfaces. In this study, the concept of field capacity was revisited and adapted to practical agronomic heuristics. By resorting to the assessment of root-zone water storage capacity (W), we envision field capacity as a functional hydraulic parameter derived from synthetic irrigation scheduling scenarios to minimize drought stress, drainage, and nitrate leachate below the root zone. A functional analysis was carried out on a 135-cm-thick layered soil profile beneath maize in eastern Nebraska. Onfarm irrigation scheduling applications and agricultural practices were recorded for 20 years (2001–2020) at a daily time step. Hydrus-1D was calibrated and validated with direct measurements of the soil water retention curve and soil water content data, respectively, in each soil layer. A set of functional field capacity values was derived from 24 irrigation scheduling scenarios, and the optimal water storage capacity at field capacity (WFC) was approximately 50 cm (corresponding to about 80% saturation in the soil profile). An average irrigation amount of 217.5 mm distributed over 21 events was obtained by using optimal irrigation scheduling, which was initiated when the matric pressure head took on a value of - 700 cm and the irrigation rate was set at 1.0 cm d-1. This irrigation practice ensured water storage at approximately the same level (ideally at WFC) by sustaining only evapotranspiration fluxes in the uppermost portion of the root zone and by limiting excessive drainage. This protocol can be transferred to other agricultural fields

    Evaluation of pedotransfer functions for predicting soil hydraulic properties: A voyage from regional to field scales across Europe

    Get PDF
    Study region: Europe. A total of 660, 522, and 4940 soil samples belonging to GRIZZLY, HYPRES, and EU-HYDI databases, respectively, were used for parametric evaluation. Study focus: The soil water retention and hydraulic conductivity functions are crucial input information for land surface models. Determining these functions by using direct methods is hampered by excessive time and unaffordable costs required for field activities and laboratory analyses. Pedotransfer functions (PTFs) are widely-used indirect techniques enabling soil hydraulic properties to be predicted by using easily-retrievable soil information. In a parametric evaluation, the predictive capability of PTFs is examined by comparing measured and estimated soil water retention parameters and saturated hydraulic conductivity. Yet information about the performance of PTFs for specific modeling applications is mandatory to evaluate PTF effectiveness in greater depth. This approach is commonly defined as functional evaluation. New hydrological insights for the region: The best performing four PTFs selected in the parametric evaluations are tested under two functional evaluations. The first encompasses a spatial interpolation with a geostatistical technique, whereas the second employs Hydrus-1D to simulate the water balance components along an experimental transect. Our results reinforce and integrate the insights of previous studies about the use of a PTF, and highlight the ability, or inability, of this technique to adequately reproduce the observed spatial variability of soil hydraulic properties and simulated water fluxes

    Pengaruh Kualitas Layanan Toilet Saga Mall Abepura Terhadap Tingkat Kepuasan Pengunjung

    Get PDF
    Penelitian bertujuan menguji pengaruh Kualitas Layanan (Reliabilitas, Daya Tanggap, Jaminan, Empati dan Bukti Fisik) Toilet Saga Mall Abepura Terhadap Kepuasan Pengunjung. Lokasi penelitian dilakukan di Saga Mall Abepura Kota Jayapura. Jenis penelitian survei ini menggunakan pendekatan kuantitatif. Populasi dari penelitian ini adalah pengunjung Saga Mall Abepura dan pernah menggunakan fasilitas toilet umum yang dmiliki oleh Saga Mall Abepura. Teknik pengambilan teknik penyampelan Non-Probability Sampling dengan teknik Purposive Sampling dan Accidental Sampling. Ukuran sampel sebesar 110 responden. Instrumen Pengambilan data menggunakan kuesioner. Data yang didapatkan dianalisis menggunakan alat analisis Structural Equation Modelling (SEM) dengan program amos versi 22. Hasil estimasi SEM menunjukkan bahwa dari lima hipotesis yang ada terdapat tiga hipotesis yang diterima dan dua hipotesis tidak diterima. Variabel reliabilitas, jaminan dan bukti fisik Pada Toilet Saga Mall Abepura berpengaruh positif terhadap kepuasan pengunjung sedangkan variabel daya tanggap dan empati pada Toilet Saga Mall Abepura tidak berpengaruh positif terhadap kepuasan pengunjung
    • …
    corecore