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Abstract 

In the last decades, human activity has been contributing to climate change that is closely associated 

with an increase in temperatures, increase in evaporation, intensification of extreme dry and wet 

rainfall events, and widespread melting of snow and ice. Understanding the intricate linkage between 

climate warming and the hydrological cycle is crucial for sustainable management of groundwater 

resources, especially in a vulnerable continent like Africa. This study investigates the relationship 

between climate-change drivers and potential groundwater recharge (PGR) patterns across Africa for 

a long-term record (1960-2010). Water-balance components were simulated by using the PCR-

GLOBWB model and were reproduced in both gridded maps and latitudinal trends that vary in space 

with minima on the Tropics and maxima around the Equator. Statistical correlations between 

temperature, storm occurrences, drought, and PGR were examined in six climatic regions of Africa. 

Surprisingly, different effects of climate-change controls on PGR were detected as a function of 

latitude in the last three decades (1980-2010). Temporal trends observed in the Northern Hemisphere 

of Africa reveal that the increase in temperature is significantly correlated to the decline of PGR, 

especially in the Northern Equatorial Africa. The climate indicators considered in this study were 

unable to explain the alarming negative trend of PGR observed in the Sahelian region, even though 

the Standardized Precipitation-Evapotranspiration Index (SPEI) values report a 15% drought stress. 

On the other hand, increases in temperature have not been detected in the Southern Hemisphere of 

Africa, where increasing frequency of storm occurrences determine a rise of PGR, particularly in 

southern Africa. Time analysis highlights a strong seasonality effect while PGR is in-phase with 

rainfall patterns in the summer (Northern Hemisphere) and winter (Southern Hemisphere) and out-of-

phase during the fall season. This study helps to elucidate the mechanism of the processes influencing 

groundwater resources in six climatic zones of Africa, even though modeling results need to be 

validated more extensively with direct measurements in future studies. 
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1. Introduction  

Groundwater is an essential natural resource for urban, industrial, and agricultural water supply and 

socioeconomic development (de Vries and Simmers, 2002). It has been projected that rapid 

population growth will force a significant increase in freshwater demands in many regions of the 

world (Wada et al., 2011). The degree to which groundwater resources can sustain increased 

abstraction is highly uncertain, given the current scarcity of groundwater recharge estimates (Döll et 

al., 2014; McLaughlin and KinzelBach, 2015). Climate-change impacts on renewable freshwater 

resources add another layer of uncertainty with regard to future pressures on water availability, 

accessibility, and demand.  

Understanding how climate drives the spatiotemporal distribution of groundwater recharge rates 

triggered below the vadose zone has been explored in existing studies in different areas of the world 

(Eckhardt and Ulbrich, 2003; Brouyere et al., 2004; Keese et al., 2005; Ng et al., 2010; Green et al., 

2011; Kim and Jackson, 2011; Crosbie et al., 2013; Panwar and Chakrapani, 2013; Faramarzi et al., 

2013). Rainfall can be considered as the major climatic driver in affecting recharge rates, with 

particular emphasis on rainfall intensity and frequency distribution. Studies related to climate change 

suggest that a greater increase in extreme precipitation will exacerbate the frequency of heavy rainfall 

events in some regions and increase the risk of more prolonged drought spells in other regions (Milly 

et al., 2005). Regional-scale studies in North America provide evidence of a decreasing trend in 

groundwater recharge under (historical or projected) global warming (Rosenberg et al., 1999; 

Ferguson and George, 2003). Other important climatic factors include solar radiation and vapor deficit, 

which significantly impact groundwater recharge rates in tropical zones (Vivoni et al., 2009; Barron 

et al., 2012). 

Groundwater is a crucial resource in Africa, where the population at risk of increased water stress is 

projected to be over 500 million people by 2050 (Burke et al., 2009; Carter and Parker, 2009; 

MacDonald et al., 2012). A sustainable and efficient water management carefully regulates 

withdrawals such that water is not overused when rainfall is not able to replenish the groundwater 

stocks. Thus, there is an urgent necessity to examine the sensitivity of groundwater recharge to 
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climate-change indicators in Africa (MacDonald et al., 2009). The challenge is to assist regional 

policy makers in Africa in acquiring more knowledge on vulnerable groundwater resources by 

capturing recharge response to extreme climate impacts (Shongwe et al., 2009; Shongwe et al., 2011).  

Field studies of groundwater recharge in Africa have had uneven spatial coverage (Edmunds, 2009; 

Bonsor and MacDonald, 2010). As a result, there is currently a pressing need for large-scale recharge 

estimates to underpin sustainable water-resource management strategies (Döll and Fiedler, 2008; 

Nyenje et al., 2009). In order to fill the information gap, this study addresses spatiotemporal 

variability in continental-scale groundwater recharge rates using a global hydrologic model (PCR-

GLOBWB) with daily boundary forcings and a high spatial resolution. We note that the model has not 

been calibrated for Africa; hence, this investigation de facto represents a large-scale sensitivity 

analysis. The term ―potential groundwater recharge‖ is therefore used to refer only to a synthetic 

model approximation of direct measurements in Africa. The results have been validated by few 

available direct-recharge measurements retrieved in the scientific literature. The main objectives of 

this study are twofold: (1) assessing the impact of climate-change drivers on spatial distribution and 

spatiotemporal trends of average annual PGR in Africa; and (2) analyzing inter-annual and seasonal 

variability of PGR. This novel contribution provides valuable insights in detecting the historical 

relationships between climate-change indicators and groundwater recharge in Africa. The 

groundwater recharge rates simulated with a continental-scale bucket model represent, to date, the 

primary data used to assess the influence of climatic controls on unconfined aquifers in Africa. 

Therefore the observed trends in six climatic regions in Africa can be used to develop analogs for 

groundwater recharge responses that can be exploited in scenario-based approaches under future 

climate-change projections. 

 

2. Methodology 

2.1 PCR-GLOBWB Model  

The PCR-GLOBWB (PCRaster-GLOBal Water Balance) is a grid-based bucket model of global 

terrestrial hydrology (van Beek et al., 2011; Wada et al., 2014; http://pcraster.geo.uu.nl/). For each 
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grid cell (spatial resolution of 0.1° × 0.1°), this model simulates the water exchange between the 

atmosphere and two vertically-stacked soil layers connected to a third underlying groundwater layer. 

The PCR-GLOBWB model refers to the units of meter (m) and day (d) for the dimensions of length 

(L) and time (T), respectively. Rainfall (L T
-1

) and snowmelt (L T
-1

) represent the inflow to the 

hydrologic system. Runoff (L T
-1

) and evaporation (L T
-1

) contribute to water loss from the soil 

surface. Vegetation affects the water balance through transpiration (L T
-1

) and canopy interception (L 

T
-1

). The soil hydraulic parameters are assigned according to eleven soil-texture classes corresponding 

to different soil types based on the FAO Digital Soil Map of the World (FAO, 2003).   

Groundwater recharge (downward flux) and capillary rise (upward flux) represent the vertical water 

exchanges between the second and third subsurface soil layers (Wada et al., 2010). Downward water 

fluxes (percolation and groundwater recharge) among the three soil layers are calculated using the 

unit-gradient form of the Darcy-Buckingham equation. Groundwater recharge interacts with 

groundwater storage through capillary rise if the top of the groundwater level is within ~5 m of the 

topographical surface (Wada et al., 2012; Wada et al., 2014). Groundwater storage is fed by 

groundwater recharge and drained as baseflow by a reservoir coefficient that includes information on 

lithology and topography (e.g., hydraulic conductivity of the subsoil; maps can be visualized in 

http://www.bgs.ac.uk/research/groundwater/international/africangroundwater/maps.html).  

The ensuing capillary rise is calculated as the upward moisture flux that can be sustained when an 

upward gradient exists and the moisture content of the soil is below field capacity. Additionally, the 

capillary rise, cannot exceed the available storage in the underlying groundwater reservoir.  

The model was forced with daily fields of precipitation, reference (potential) evapotranspiration, and 

temperature for the 1960-2010 period. For the 1960-1978 period, boundary forcings were prescribed 

by the ERA40 re-analysis data (Uppala et al., 2005). The associated climate data are publicly 

available at http://www.ecmwf.int/en/forecasts/datasets/era-40-dataset-sep-1957-aug-2002. In order to 

extend our analysis to the year 2010, we forced the model by comparable daily climate fields taken 

from the ERA-Interim re-analysis data, from which we obtained daily fields of temperature, reference 

potential evapotranspiration, and GPCP-corrected precipitation (GPCP: Global Precipitation 

Climatology Project; http://www.gewex.org/gpcp.html). For compatibility with our overall analysis, 
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the ERA40 data analysis was bias-corrected on a grid-by-grid basis by scaling the long-term monthly 

means of the daily climate fields (precipitation, evapotranspiration, and temperature) to those of the 

ERA-Interim data for the overlapping reference climate for 1979-2001. We then further bias-corrected 

the modified climate dataset by scaling the long-term monthly means of the daily climate fields to 

those from the Climate Research Units (CRU) TS 2.1 time-series (Mitchell and Jones, 2005), 

wherever station coverage by the CRU is adequate for the overlapping period. The associated climate 

data are publicly available at http://www.cru.uea.ac.uk/data. For the ERA40 re-analysis data, we 

separately bias-corrected for the 1960s and 1970s period to correct the overestimation of precipitation 

present over the tropics during the 1970s (Hempel et al., 2013; Wada et al., 2014; Wada and 

Bierkens, 2014).  

 

2.2 Model Limitations 

We caution that the continental-scale lumped-parameter approach provides only a crude 

approximation of the water budget and is possible at the cost of several simplifications: (a) ignoring 

preferential flow into the soil, fractured rock, saprolite (Neumann, 2005; Beven and Germann, 2013), 

and karst regions (Hartmann et al., 2014); (b) not considering the role of macroporosity (Owor et al., 

2009; Taylor et al., 2013); (c) missing proper soil-hydraulic properties pertaining to datasets related to 

specific Tropical and Equatorial zones in Africa (Minasny and Hartemink, 2011); (d) missing 

information on land-use changes (urbanization, deforestation) in Africa (Githui et al., 2009; Baker and 

Miller, 2013); (e) lacking records of water pumping and the role of human consumption of water; and 

(f) ignoring focused recharge via leakage from surface waters (ephemeral streams, wetlands, or lakes). 

Therefore, we caution that the model might not be able to simulate actual recharge rates in some 

regions and, for this reason, we will refer only to ―potential groundwater recharge‖ (PGR) in the 

remainder of the manuscript (Rushton, 1997). 

In order to test the above limitations of the model, we compiled 13 published groundwater recharge 

rates (Table 1) obtained primarily by field techniques, namely chloride mass balance (CMB), water 

table fluctuations (WTF), groundwater residence time (GRT) with the use of tracers, and water 

balance (WB) (BredenKamp et al., 1995; Scanlon et al., 2002; Wang et al., 2010). The spatial 
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resolution (SP), mean () values, and ranges of average annual observed groundwater recharge rates 

are reported with the corresponding simulated values in PCR-GLOBWB (Table 1).  

The Nash-Sutcliffe Efficiency (NSE%) index has been calculated for the analysis of agreement 

between observed (GRobs) and simulated (GRsim) groundwater recharge (GR): 
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where N is the number of recharge observations (N = 13), and obsGR is the arithmetic mean of 

observed groundwater recharge. High values of NSE% (near 100%) indicate best agreements, 

whereas a value of 50% (i.e., NSE% > 50%) can be assumed as a threshold for efficient and 

acceptable agreements (Moriasi et al., 2007). Near-zero or negative values of NSE% (0 > NSE% > –

) indicate unacceptable performances provided by the model simulations (Bennet et al., 2013).  

Despite the fact that the NSE% = 30.6% is below the threshold of satisfactory efficiency (NSE% < 

50%), the performance can be considered sufficiently acceptable, considering that the model was not 

calibrated. The relative differences (RD), expressed in percentages of the log10-values listed in the 

right-hand column of Table 1, indicate that most of the modeled recharge rates tend to overestimate 

the measurements. The best model performances are observed in countries in southern Africa 

(Botswana, Zambia, and Zimbabwe), albeit preferential flow plays an important role in controlling 

recharge rates measured with chloride mass balance (de Vries et al., 2000). Higher discrepancies are 

reported in countries of Sahelian Africa (Niger, Sudan).  

 

2.3 Data Processing 

The set of input and output data in Africa for the 51-year time period (1960-2010) was taken from the 

existing database of worldwide simulations executed by the PCR-GLOBWB model (Wada et al., 

2014). Gridded parameter values, boundary forcings, and simulation results were mapped using 
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ArcMap 10.1. Statistical analyses were completed in a parallel computing environment that adapted 

MATLAB into a super-computing cluster (http://hcc.unl.edu/tusker/index.php). The scripts can be 

made available upon request. 

The analysis of extreme-rainfall variability considered two statistical indicators describing storm 

occurrences (fmax) and mean dry consecutive days (dry) (Small, 2005). The former expresses the 

number of storms (all those values above the annual mean value) over the total number of rainfall 

events, while the latter is identified through the mean dry interval time between two separate rainfall 

events.  

Average annual values of boundary forcings, namely rainfall (P) and potential evapotranspiration 

(ETp), are displayed in Fig. 1, whereas simulated water-balance components, namely potential 

groundwater recharge (PGR), actual evapotranspiration (ETa), and runoff (Qr), are shown in Fig. 2.  

The continental-scale spatial distribution of average annual PGR and Qr broadly follows the 

precipitation distribution (Goddard and Graham, 1999; Sultan and Janicot, 2000).  

The African continent has a heterogeneous distribution of renewable freshwater resources. Water 

availability is mostly concentrated in the humid zones around the Equator. The remaining areas 

experience permanent arid conditions with modest or insignificant recharge generation (Schuol et al., 

2008). Nevertheless, the humid areas are characterized by a high degree of spatial and temporal 

variability of groundwater recharge rates. On a latitudinal-averaged basis, the mean annual PGR 

reaches maxima near the Equator (0.42 m yr
-1

 at latitude -0.45°N) and minima near the tropics 

(0.00028 m yr
-1

 at 20.05°N and 0.012 m yr
-1

 at -25.35°N, respectively) (Fig.2).  

 

The Mann-Kendall nonparametric test (Mann, 1945; Kendall, 1975) has been calculated in order to 

detect eventual temporal trends in long-time series for annual temperature (T), rainfall indicators 

(fmax,dry), and PGR. The Mann-Kendall test is expressed by: 
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where xi and xj are the sequential data values, N (the total number of years is 51 between 1960 and 
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2010) is the length of data series, and sgn is the sign function. For a large number of years, S is 

assumed to be normally distributed with an expected value E(S) = 0 and  

18
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 The standardized test statistic Zc is calculated as: 
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The null hypothesis indicating no trend is accepted when |Zc|  Z1-/2, where  is the significance level, 

and Z1-/2 is the standard normal quantile at probability level of 1-/2. Therefore, the trend test is 

based on the following two conditions: 

(1) Zc < -Z1-/2 indicates decreasing trend; and 

(2) Zc > Z1-/2 indicates increasing trend. 

In this study, we fixed  at the 0.05 significance level, and Z1-/2 = 1.96. 

3. Results and Discussions 

3.1 Spatial Distribution of PGR 

The objective of this subsection is to characterize PGR spatial patterns in Africa and to identify 

statistical relationships between average annual rainfall and PGR on a latitudinal-averaged basis. 

Trambauer et al. (2014) recently defined six climatic regions, namely Mediterranean (MED), Sahel 

(SAH), North Equatorial Central Africa (NEQ), Horn of Africa (HORN), South Equatorial Central 

Africa (SEQ), and Southern Africa (SAFR). These six regions were based on the existing map of five 

climate classes (hyper-arid, arid, semi-arid, dry sub-humid, and humid) according to the aridity index, 

defined as the ratio between mean-annual rainfall and mean-annual evaporation (Fig.3a).  

 

PGR occurs significantly only in the North (21% area) and South (12% area) Equatorial Central 

Africa (NEQ+HORN and SEQ) regions with 0.27 m yr
-1 

and 0.26 m yr
-1

, respectively (Fig. 3b). PGR 
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is lower than 0.05 m yr
-1 

in the remaining four regions (MED, SAH, HORN, and SAFR) that cover the 

major part of Africa. In addition to climate drivers, biophysical controls, such as  geomorphology, soil 

stratigraphy, lithology, and land use, play a paramount role in determining the spatial variability of the 

water-balance components (Beauvais, 1999; Farmer et al., 2003; Kim and Jackson, 2011). 

Longitudinal variabilities of PGR, ETa, and Qr increase with rainfall along the Equatorial latitudes, as 

designated by the larger gray-shaded areas depicted in Fig. 2d-f.  

 

The highest rates of PGR are observed in the NEQ and SEQ regions (0.29 and 0.26 m yr
-1

, 

respectively) (Table 2). The coefficients of variation (CV) values are relatively low (12% and 15%, 

respectively). The recharge rate in the Mediterranean region is one order of magnitude lower than that 

of central Africa (0.0215 m yr
-1

), whereas the remaining three regions have recharge rates of two 

orders of magnitude lower than those in Equatorial Africa with the highest degree of spatial variability 

(CV > 100 %). Average recharge rates of 0.05 m yr
-1

 as simulated in the PCR-GLOBWB model in the 

SAH region support previous measurements in chloride profiles that range between 0.03 and 0.15 m 

yr
-1

 (Scanlon et al., 2006)      

The latitudinal relationships between average annual rainfall and PGR in each climatic region (HORN 

is combined with NEQ) demonstrate that all correlation coefficients (R
2
) are significantly high (0.75 < 

R
2 

< 0.88), implying that PGR is highly dependent on average annual rainfall patterns (Fig. 4). We 

observe that the lowest correlation value (R
2  

= 0.75) in the MED region is significantly affected by a 

strong drying latitudinal (north-south) gradient. The northern semi-arid half portion (37° < lat < 32°) 

of the MED region is characterized by high spatial variability and very low correlation between P and 

PGR. Conversely, in the southern hyper-arid half portion outside of the mountainous headwaters (32° 

< lat < 27°) of the MED region, P and PGR are reduced by three times but exhibited high correlation. 

The regression line grade (indicated by the slope-values) gets steeper in Central Africa (NEQ + 

HORN and SEQ) and three times lower in the other three climatic zones (MED, SAH, and SAFR), 

where the average annual rate of PGR is only between 14% and 24% of P on a latitudinal-averaged 

basis. 
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The spatial distribution of climate-indicators, namely storm occurrences and drought, reflects different 

patterns in the two Hemispheres (Fig.5) 

 

The extreme rainfall parameter, fmax, increases between the Equator and the Tropic of Capricorn, with 

the peak at -12.95°N (fmax = 0.42), meaning that about 40% of rainfall events have intensities higher 

than their mean values. The values of dry emphasize the importance of episodic rainfall events in the 

hyper-arid areas of the Northern Hemisphere and follow a similar trend along the latitude with a 

cusped shape in proximity to the Tropic of Cancer characterized by a high degree of longitudinal 

variability. A modest increase of dry is detected above the Tropic of Capricorn.  

 

3.2 Temporal Variability of PGR  

3.2.1 Inter-annual variability of PGR 

This section addresses the empirical understanding of how climate-change drivers have been related 

to PGR in the last three decades (1980-2010).  

 

The Spearman's correlation coefficients between PGR and climate-change indicators (temperature and 

the two extreme rainfall distribution indicators; see Table 3)highlight a general negative correlation 

between temperature (T) and PGR, with zero effect on the MED, SAH, and HORN regions, with a 

modest impact on SEQ (-0.20), and with a significant influence on NEQ (-0.48) and SAFR (-0.76) 

(Tashie et al., 2015). While the relationship between rainfall and temperature is difficult to 

characterize, the correlation between potential evapotranspiration (ETp) and temperature is often 

positive (Kingston and Taylor, 2010).  

The parameter, fmax, has a very low impact in the arid regions of Africa, with the exception of SAFR, 

whereas significant correlation is observed in Equatorial Africa. The increase in storm occurrences 

favors both PGR and Qr generation in humid Equatorial regions of Africa. Indeed, in the model setup, 

the former is driven by gravity and is greatest under saturated conditions, while the latter occurs under 
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the same circumstances but when rainfall exceeds soil-infiltration capacity. The parameter dry 

significantly affects the two extreme regions (MED and SAFR) with correlations values of -0.45 and -

0.38, respectively, while the impacts in the humid regions are relatively low.  

The Mann-Kendall test results pertaining to the last three decades of model simulations (1980-

2010)elucidate the temporal evolution of climate-indicators and PGR (Table 4). The temperature 

exhibits increasing trends in the MED, SAH, and NEQ zones, but not in the Southern Hemisphere of 

Africa. The extreme rainfall indicators also signal an increasing trend of fmax in SAFR (Min et al., 

2011). Nevertheless, PGR shows decreasing trends in SAH and NEQ and an increasing trend in 

SAFR. In view of the significant trends reported in Table 4 and considering the correlation 

coefficients listed in Table 3, we can infer that climate change is significantly impacting PGR only in 

the SAH, NEQ, and SAFR climatic zones. The two zones above the Equator indicate negative 

correlation between temperature and PGR, whereas the latter shows a high positive correlation value 

between fmax and PGR. 

 

It is interesting to note that temperature is increasing only in the Northern Hemisphere of Africa. This 

implies a general decrease in PGR in the zones above the Equator, in contrast to a general temporal 

stability of climatic-change drivers and hydrological balance in the Southern Hemisphere. The 

climate-temporal variation in each climatic zone has been objectively analyzed through the 

Standardized Precipitation-Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010) 

downloaded from the website http://sac.csic.es/spei/database.html (Beguería et al., 2014). This multi-

scalar drought index has the advantage of combining the effect of precipitation and potential 

evapotranspiration demand (affected by temperature) and is particularly valuable for the application 

of future projections (Lorenzo-Lacruz et al., 2010). For the purpose of showing an illustrative 

example, a transect along longitude 15.25°E has been identified by considering latitudes 28.25°N, 

15.25°N, 5.25°N, -5.25°N, and -22.25°N for the MED, SAH, NEQ, SEQ, and SAFR zones, 

respectively. Very dry conditions characterized by negative SPEI values are observed in the 1930s, 

1940s, and 1970s in the MED zone, the 1970s, 1980s, and 1990s in the SAH zone, the 1930s in the 

NEQ zone, the 1950s in the SEQ zone, and the 1920s, 1980s, and 1990s in the SAFR zone (Fig.6). 
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This qualitative visual inspection confirms the high-climatic variability among the different zones of 

Africa. However, we considered the temporal SPEI values in all cells pertaining to each climatic zone. 

Thus, it is possible to compare the frequency distribution of the SPEI values in the time range (1901-

2010) with the distribution belonging to the last three decades of model simulations (1980-2010) in 

order to identify the causes of the trends observed in Table 4.The frequency distributions of SPEI 

values (blue bars) in the entire range with an expected SPEI mean around zero approximately partition 

50% of wet and 50% of dry conditions (Fig.7). The frequency distributions of SPEI values (red bars) 

pertaining to the last three decades in the Northern Hemisphere of Africa are affected by a shift to the 

left by lowering the probabilities of observing wet conditions by 4.4%, 14.8%, and 6% for MED, 

SAH, and NEQ, respectively. Decreasing trend of PGR is observed in the SAH and NEQ zones, but 

not in the MED region (Table 4). The devastating drought spells in the SAH zone in the last three 

decades probably represent the most prevalent climatic changes in Africa that have significantly 

decreased PGR. On the other hand, the two zones (SEQ and SAFR) in the Southern Hemisphere 

report a slight increase in wet conditions in the last three decades, increasing by 1.5% and 1% in the 

SEQ and SAFR zones, respectively. The climatic stability observed in the SEQ zone impedes any 

trend for PGR, although the climate and PGR statistics of NEQ and SEQ (observed in Tables 1, 2, and 

3; Fig. 4) are very similar. Based on the historic data, our findings support the future projections 

described by Faramarzi et al. (2013) that predict an increase up to 400% of blue water in Southern 

Africa (albeit small) and a decrease of renewable water resources by 25-100% in the semi- and hyper-

arid regions of Africa that will become more susceptible to severe drought conditions. Döll and Flörke 

(2005) evaluated the impact of climate change on long-term, average annual diffuse groundwater 

recharge, as simulated by the global hydrological WaterGAP Global Hydrology Model. By applying 

four different climate-change scenarios between the present day and the 2050s, they have predicted a 

significant increase in groundwater recharge by up to 30% in the SAH and HORN regions, while 

decreasing trends are expected in the MED and southwestern SAFR regions. 

Site-specific studies in Africa support our findings. Ruelland et al. (2012) predict a decrease of 

rainfall by 15-17% and a rise in potential evapotranspiration by 16-18% in the Bani River catchment 

located in Mali (SAH region), resulting in a critical reduction of water availability. The effects of 
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climate change on groundwater recharge in the upper Ssezibwa catchment, Uganda (the SEQ region) 

have been investigated by Nyenje and Batelaan (2009), who implemented a hydrological model for 

simulating future climate-change scenarios. They predict a combined increase of rainfall and 

groundwater recharge by 100% in 2080.   

 

3.2.2 Seasonality of PGR 

The rainfall regimes during the four seasons are complex in both the Northern and Southern 

Hemispheres (Nicholson, 2000). Seasonal variation of P and PGR is considered both in gridded maps 

(Fig.8) and in latitudinal averaged basis (Fig.9). Seasonal rainfall maxima are observed in the SAH 

zone in summer and in the SAFR zone in winter. Nevertheless the Equatorial zones (NEQ and SEQ) 

are characterized by two rainy seasons (spring and fall). However, large longitudinal variability is 

observed in the MED and SAFR zones in winter. 

In general, PGR is in-phase with rainfall patterns in the summer and winter, while the two regimes are 

out-of-phase in the Southern Hemisphere during the spring and in the Northern Hemisphere in the 

fall.  

In the MED region (above the Tropic of Cancer), rainfall is mostly concentrated in the spring, fall, 

and winter. Episodic and intense rainfall events without PGR response occur in spring, especially over 

the Atlas Mountain range in northwestern Africa (Jasechko et al., 2014). The summer in this region is 

very dry, whereas fall and winter are characterized by rainfall events with recharge occurring only in 

winter (peak of 0.1 m yr
-1 

in the northern extreme). The winter is affected by a significant frequency 

of intense storms (high fmax-values; see Fig. 5h) that trigger PGR occurrences in the vadose zone.  

The region delimited by the two Tropics (which includes the southern portion of Sahel, Equatorial 

central Africa, Horn of Africa, and the northern portion of southern Africa) is affected by marked 

seasonal trends of rainfall and PGR. It is interesting to note that P and PGR oscillate with a moving 

bell-shaped curve, with minima corresponding to the two tropical lines and the maximum point over 

the Equator in spring and fall.  

In the spring, P is almost symmetrically partitioned by the Equatorial line which delimits the 

maximum point (0.44 m yr
-1

); conversely, PGR is 70% in the Southern Hemisphere and 30% in the 
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Northern Hemisphere, with maxima (about 0.44 m yr
-1

) spanning from the Equator down to the border 

between SEQ and SAFR. The rainfall over the Tropic of Capricorn is 0.08 m yr
-1

. In the summer, the 

rainfall line shifts towards the north (79% rainfall in the north), with its peak at 11.05°N (about 0.60 

m yr
-1

), followed by PGR (91% recharge in the north), with its peak (0.13 m yr
-1

) at 7.35°N. In the 

fall, the rainfall line moves back and reaches its peak (0.51 m yr
-1

) immediately below the Equator 

(Table 5). Surprisingly, we observed a rainfall value of 0.14 m yr
-1

 in the Tropic of Capricorn, 

indicating a rainfall concentration over the area that includes Zimbabwe, Mozambique, and Botswana. 

Indeed, rainfall in this season is not symmetrically subdivided by the Equator, but with a 

disproportion of 66% in the Southern Hemisphere (mostly in the South Equatorial central Africa; Fig. 

9c) and 34% in the Northern Hemisphere. On the contrary, PGR remains concentrated in the Northern 

Hemisphere (76%) with its peak (0.14 m yr
-1

) above the Equator and a gradual decrease northward 

with zero values registered in central Sahel. Finally, in the winter, the rainfall line moves southward 

with its maximum point (0.66 m yr
-1

) at -11.25°N and 86% of rainfall in the Southern Hemisphere. 

The severe rainfall events prompt PGR, even in zones that remain arid for the rest of the year. In this 

period, the PGR follows the rainfall with a very similar proportion (82% in the south) and its peak of 

0.13 m yr
-1

 at -11.75°N.  

 

4. Conclusions 

Groundwater levels of shallow aquifers worldwide have been experiencing a decreasing trend over the 

last few decades. This is generally due to groundwater pumping surpassing groundwater recharge 

rates (Wada et al., 2014). Nonetheless, climate-related changes in groundwater recharges merit further 

analysis because their impact might alleviate or exacerbate the observed general decreasing trend 

(Loaiciga et al., 2000).  

In light of future climate-change predictions, we are particularly interested in understanding how PGR 

reacts to temperature increases and changing storm characteristics, particularly because their impact 

on groundwater recharge remains poorly understood in Africa. The conditions that favor or limit PGR 

over evapotranspiration or runoff generation depend largely on the nonlinear unsaturated zone 
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response to rainfall. These results highlight the three main following potential consequences in 

climate-change conditions caused by continental warming: (1) increasing temperatures occurring in 

the Northern Hemisphere can potentially trigger a decrease of PGR, especially in the NEQ region; (2) 

the decreasing trend of PGR observed in the last three decades in the SAH region is not correlated to 

the temperature or dry, even though the SPEI values point out a notable decrease of 15% of 

probability for wet conditions; and (3) storm occurrences affect the humid regions of Equatorial 

Africa (NEQ and SEQ), and the increasing trends of fmax and PGR have been observed in SAFR for 

the last 30 years. Therefore, the rise in temperature and storm occurrences, which can be considered 

warning signs of climate change, impact PGR in contrasting modes in the Northern and Southern 

Hemispheres of Africa. These outcomes align with previous continental-scale predictions carried out 

by Faramarzi et al. (2013), and the observed historical trends partially contrast future projections 

provided by Döll and Flörke (2005).   

Temporal analysis reveals the role of seasonality with evident latitudinal patterns and disproportional 

distribution of rain and PGR between the Northern and Southern Hemispheres. The rainfall and PGR 

regimes are out of phase in the spring and fall, and synchronous in the summer and winter.  

In view of the empirical relations observed in this study, future scenarios can concentrate on specific 

statistical analyses to link storm characteristics and temperature variations with PGR in simplistic 

models used for water-resources management. The observed model uncertainty is high all across 

Africa, with the exception of SAFR. Therefore, the outcomes observed in our analysis might be 

potentially realistic only for southern Africa. Nonetheless, we emphasize the importance of offering 

coarse guidelines on the relations between climate change and PGR as representing preliminary 

outcomes for future applications, that will be hopefully tested by direct groundwater-recharge 

measurements. 
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Figure 1. Gridded maps of average annual (a) rainfall (P) and (b) potential evapotranspiration (ETp);  

latitudinal patterns of average annual (c) P and (d) ETp. The ranges of values between the 25
th
 and 75

th
 

percentiles are represented by the gray bands. The horizontal dotted lines represent the Tropic of 

Cancer and the Tropic of Capricorn, while the horizontal dashed line depicts the Equator.  
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Figure 2. Gridded maps of average annual (a) potential groundwater recharge (PGR), (b) actual 

evapotranspiration (ETa), and (c) runoff (Qr); latitudinal patterns of average annual (d) PGR, (e) ETa, 

and (f) Qr. The ranges of values between the 25
th
 and 75

th
 percentiles are represented by the gray 

bands. The horizontal dotted lines represent the Tropic of Cancer and the Tropic of Capricorn, while 

the horizontal dashed line depicts the Equator. 

  

L
at

it
u
d

e
ETa (m yr-1)PGR (m yr-1) Qr (m yr-1)

L
at

it
u
d

e

0 0.2 0.4 0.6 0 0.5 1.0 1.5 0 0.5 1.0

a b c

d e f

ETa (m yr-1)PGR (m yr-1) Qr (m yr-1)

40

20

0

-20

-40

Longitude Longitude Longitude



 

 
This article is protected by copyright. All rights reserved. 

 

Figure 3. (a) Gridded patterns of the five climate classes and six climatic regions in Africa; (b) 

average annual PGR (black circles) delimited by the 25
th
 and 75

th 
percentiles in each climatic region 

(vertical black lines). The gray bar charts depict the relative contributing areas, AC (%). 
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Figure 4. Relationship between average annual rainfall (P) and potential groundwater recharge (PGR) 

values (gray squares) along with trend lines (dotted lines) and correlation coefficients (R
2
) in (a) 

MED, (b) SAH, (c) NEQ+HORN, (d) SEQ, and (e) SAFR.  
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Figure 5. Gridded maps of (a) storm occurrences (fmax) and (b) mean dry consecutive days (dry); 

latitudinal patterns of (c) fmax and (d) dry. The ranges of values between the 25
th
 and 75

th
 percentiles 

are represented by the gray bands. The horizontal dotted lines represent the Tropic of Cancer and the 

Tropic of Capricorn, while the horizontal dashed line depicts the Equator. 
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Figure 6. Temporal evolution of 12-month SPEI values from 1901-2013 along the transect at 

longitude 15.25°E. 
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Figure 7. Frequency distribution of the 12-month SPEI values from 1901-2010 (blue bars) and from 

1980-2010 (red bars) in the six climatic regions of Africa (MED, SAH, NEQ+HORN, SEQ, and 

SAFR).  
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Figure 8. Gridded maps of P (top panel) and PGR (bottom panel) in spring, summer, fall, and winter. 
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Figure 9. Latitudinal trends of P (black lines) and PGR (red lines) in spring, summer, fall, and winter. 

The horizontal dotted lines represent the Tropic of Cancer and the Tropic of Capricorn, while the 

horizontal dashed line depicts the Equator. 
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Table 1 - List of bibliographic references  in 13 countries of Africa reporting spatial resolution (SP), average 

(), range (min and max) and method of measured recharge. PCR-GLOBWB simulated recharge values are 

reported as well and compared to measured recharge rates through the relative differences (RD).  

 

  Observations Simulations   

Country Reference SP μ min max method PCR-GLOBWB RD 

    km
2
 m yr

-1
 m yr

-1
 m yr

-1
   m yr

-1
 % 

Botswana de Vries et al. (2000) 
†
 4,875 0.005 0.001 0.010 CMB 0.003 7.1 

Burundi Bakundukize et al. (2011) 1,050 0.235 0.141 0.306 WB 0.345 -26.6 

Cameroon Fouépé Takounjou et al. (2011) 11 0.108 0.016 0.237 WTF+CMB 0.252 -38.1 

Ethiopia Demlie et al. (2007) 1,500 0.265 0.088 0.418 GRT 0.189 25.4 

Niger Leduc et al. (1997) 595 0.055 0.050 0.060 WTF+CMB 0.005 84.6 

Nigeria Edmunds et al. (2002) 
†
 18,000 0.030 0.014 0.049 CMB 0.088 -30.8 

Senegal Edmunds and Gaye (1994) 
†
 1,600 0.016 0.005 0.034 CMB 0.069 -35.4 

Sudan Abdalla (2009) 
†
 60,000 0.006 0.004 0.008 GRT 0.036 -35.1 

Tanzania Nkotagu (1996) 
†
 - 0.013 0.010 0.016 CMB 0.075 -40.4 

Togo Akouvi et al. (2008) 3,500 0.063 0.038 0.088 GRT 0.139 -28.7 

Uganda Taylor and Howard (1996) 
†
 840 0.200 - - WB 0.294 -23.9 

Zambia Houston (1982) 
†
 40 0.080 - - WB 0.118 -15.4 

Zimbabwe Sibanda et al. (2009) - 0.025 0.002 0.062 WTF+CMB+GRT 0.049 -18.0 

 
†
 included in Bonsor and MacDonald (2010) 

     
 

 

Table 2- Descriptive statistics of precipitation (P) and potential groundwater recharge (PGR) with 

mean (), standard deviation (), coefficient of variation (CV), minimum (min) and maximum (max) 

in the six climatic regions of Africa (MED, SAH, NEQ+HORN, SEQ and SAFR). 

 

    MED SAH NEQ+HORN SEQ SAFR 

 
  27° < lat < 37° 10° < lat < 20° 0° < lat < 10° -10° < lat < 0° -35° < lat < -10° 

    P PGR P PGR P PGR P PGR P PGR 

μ m yr
-1

 0.22 0.04 0.40 0.05 1.24 0.27 1.32 0.26 0.68 0.08 

 m yr
-1

 0.17 0.03 0.31 0.05 0.12 0.06 0.12 0.07 0.27 0.07 

CV % 79 80 80 118 9 22 9 27 40 82 

min m yr
-1

 0.02 0 0.03 0 0.99 0.14 1.18 0.18 0.36 0 

max m yr
-1

 0.60 0.12 0.94 0.15 1.48 0.38 1.52 0.42 1.19 0.24 
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Table 3- Spearman's correlation coefficients between PGR and temperature (T) and rainfall indicators 

(fmax, dry) in the six climatic regions of Africa (MED, SAH, NEQ, HORN, SEQ and SAFR). 

 

  MED SAH NEQ HORN SEQ SAFR 

T -0.10 -0.09 -0.48 0.03 -0.20 -0.76 

dry -0.45 -0.19 -0.01 -0.12 -0.06 -0.38 

fmax 0.03 -0.01 0.45 0.06 0.39 0.59 

 

Table 4- Mann-Kendall trend test for annual temperature (T), rainfall indicators (fmax, dry) and 

potential groundwater recharge (PGR) in the six climatic regions of Africa (MED, SAH, NEQ, 

HORN, SEQ and SAFR). Significant positive and negative values are indicated in bold text  

 

  MED SAH NEQ HORN SEQ SAFR 

T 4.59 3.94 3.54 0.56 0.78 -0.68 

dry -0.08 -0.85 -1.17 -0.10 -0.22 -0.12 

fmax -0.14 -1.82 1.53 0.75 -1.02 3.55 

PGR -0.03 -2.07 -2.58 1.84 -0.27 2.33 

 

Table 5 - Seasonal partition of P and PGR (in %) between Northern and Southern Hemispheres. 

 

  Spring Summer Fall Winter 

  P PGR P PGR P PGR P PGR 

  % % % % % % % % 

Northern Hemisphere 46 29 79 91 34 76 14 18 

Southern Hemisphere 54 71 21 9 66 24 86 82 

  


