334 research outputs found
Numerical Simulation of a Tornado Generating Supercell
The development of tornadoes from a tornado generating supercell is investigated with a large eddy simulation weather model. Numerical simulations are initialized with a sounding representing the environment of a tornado producing supercell that affected North Carolina and Virginia during the Spring of 2011. The structure of the simulated storm was very similar to that of a classic supercell, and compared favorably to the storm that affected the vicinity of Raleigh, North Carolina. The presence of mid-level moisture was found to be important in determining whether a supercell would generate tornadoes. The simulations generated multiple tornadoes, including cyclonic-anticyclonic pairs. The structure and the evolution of these tornadoes are examined during their lifecycle
Three-Phased Wake Vortex Decay
A detailed parametric study is conducted that examines vortex decay within turbulent and stratified atmospheres. The study uses a large eddy simulation model to simulate the out-of-ground effect behavior of wake vortices due to their interaction with atmospheric turbulence and thermal stratification. This paper presents results from a parametric investigation and suggests improvements for existing fast-time wake prediction models. This paper also describes a three-phased decay for wake vortices. The third phase is characterized by a relatively slow rate of circulation decay, and is associated with the ringvortex stage that occurs following vortex linking. The three-phased decay is most prevalent for wakes imbedded within environments having low-turbulence and near-neutral stratification
Review of Idealized Aircraft Wake Vortex Models
Properties of three aircraft wake vortex models, Lamb-Oseen, Burnham-Hallock, and Proctor are reviewed. These idealized models are often used to initialize the aircraft wake vortex pair in large eddy simulations and in wake encounter hazard models, as well as to define matched filters for processing lidar observations of aircraft wake vortices. Basic parameters for each vortex model, such as peak tangential velocity and circulation strength as a function of vortex core radius size, are examined. The models are also compared using different vortex characterizations, such as the vorticity magnitude. Results of Euler and large eddy simulations are presented. The application of vortex models in the postprocessing of lidar observations is discussed
An Improved Wake Vortex Tracking Algorithm for Multiple Aircraft
The accurate tracking of vortex evolution from Large Eddy Simulation (LES) data is a complex and computationally intensive problem. The vortex tracking requires the analysis of very large three-dimensional and time-varying datasets. The complexity of the problem is further compounded by the fact that these vortices are embedded in a background turbulence field, and they may interact with the ground surface. Another level of complication can arise, if vortices from multiple aircrafts are simulated. This paper presents a new technique for post-processing LES data to obtain wake vortex tracks and wake intensities. The new approach isolates vortices by defining "regions of interest" (ROI) around each vortex and has the ability to identify vortex pairs from multiple aircraft. The paper describes the new methodology for tracking wake vortices and presents application of the technique for single and multiple aircraft
Artificial intelligence and machine learning for additive manufacturing composites toward enriching Metaverse technology
As a result of the growing significance and application of technology across a wide range of fields, digital environments such as Metaverse started to take shape over the span of the previous decade. This study aims to discover an area of engineering that could benefit from this new technology by developing an artificial intelligence (AI)—based approach to analyzing and predicting the mechanical properties of carbon fiber reinforced syntactic thermoset composites that are made through additive manufacturing (AM). These composites are intended to be utilized as a tool for metaverse technology in a variety of domains—as the presence of the limitations in the currently experimental methods. The metaverse allows for the generation of simulations through the application of artificial intelligence (AI) and machine learning (ML). Consequently, this paves the way for individuals to investigate various design possibilities and view the virtual manifestation of those possibilities. This is made possible by the use of machine learning algorithms, which allow for the monitoring and evaluation of user performance, as well as the provision of individualized feedback and suggestions for improvement. As a consequence of this, it is feasible that professionals will be able to get education and training that are both more efficient and effective. Consequently, this work aims to introduce an Adaptive Neuro-Fuzzy Inference System (ANFIS)—based model, which is able to effectively anticipate the behavior of mechanical systems in a variety of settings without the need for significant measurements. The validity of the ANFIS model was determined through the utilization of flexure and compression testing. The approach that was used to improve the technical assessment of the manufactured composites—is verified by the model’s near-realistic predictions. Moreover, this method is superb for lowering weight, enhancing mechanical qualities, and minimizing product complexity
Evaluation of Fast-Time Wake Vortex Models using Wake Encounter Flight Test Data
This paper describes a methodology for the integration and evaluation of fast-time wake models with flight data. The National Aeronautics and Space Administration conducted detailed flight tests in 1995 and 1997 under the Aircraft Vortex Spacing System Program to characterize wake vortex decay and wake encounter dynamics. In this study, data collected during Flight 705 were used to evaluate NASA's fast-time wake transport and decay models. Deterministic and Monte-Carlo simulations were conducted to define wake hazard bounds behind the wake generator. The methodology described in this paper can be used for further validation of fast-time wake models using en-route flight data, and for determining wake turbulence constraints in the design of air traffic management concepts
Sensitive HPV detection in oropharyngeal cancers.
BACKGROUND: Human papillomaviruses (HPV) are the aetiological agents of certain benign and malignant tumours of skin and mucosae; the most important of which is cervical cancer. Also, the incidence of ano-genital warts, HPV-anal cancer and oropharyngeal cancers are rising. To help ascertain a useful PCR detection protocol for oropharyngeal cancers, we directly compared three commonly used primer sets in detection of HPV from different clinical samples. METHODS: We compared PGMY09/11, MY09/11 and GP5+/6+ primers sets in PCRs of 34 clinically diagnosed samples of genital warts, cervical brushings (with associated histological diagnosis) and vulval biopsies. All negative samples were subsequently tested using the previously reported PGMY/GP PCR method and amplicons directly sequenced for confirmation and typing. An optimised PCR protocol was then compared to a line blot assay for detection of HPV in 15 oropharyngeal cancer samples. RESULTS: PGMY09/11 primers detected HPV presence in more cervical brushing (100%) and genital wart (92.9%) samples compared to MY09/11 (90% and 64.3%) and GP5+/6+ (80% and 64.3%) primer sets, respectively. From vulval biopsies, HPV detection rates were: MY09/11 (63.6%), GP5+/6+ (54.5%) and PGMY09/11 (54.5%). PGMY/GP nested PCR demonstrated that HPV was present, and direct sequencing confirmed genotypes. This nested PCR protocol showed detection of HPV in 10/15 (66.7%) of oropharyngeal cancer samples. CONCLUSIONS: PGMY09/11 primers are the preferred primer set among these three for primary PCR screening with different clinical samples. MY09/11 and GP5+/6+ may be used (particularly for cervical samples) but demonstrate lower detection rates. A nested PCR approach (i.e. a PGMY-GP system) may be required to confirm negativity or to detect low levels of HPV, undetectable using current primary PCR methods, as demonstrated using oropharyngeal cancer samples.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Optimizing Nervous System-Specific Gene Targeting with Cre Driver Lines: Prevalence of Germline Recombination and Influencing Factors.
The Cre-loxP system is invaluable for spatial and temporal control of gene knockout, knockin, and reporter expression in the mouse nervous system. However, we report varying probabilities of unexpected germline recombination in distinct Cre driver lines designed for nervous system-specific recombination. Selective maternal or paternal germline recombination is showcased with sample Cre lines. Collated data reveal germline recombination in over half of 64 commonly used Cre driver lines, in most cases with a parental sex bias related to Cre expression in sperm or oocytes. Slight differences among Cre driver lines utilizing common transcriptional control elements affect germline recombination rates. Specific target loci demonstrated differential recombination; thus, reporters are not reliable proxies for another locus of interest. Similar principles apply to other recombinase systems and other genetically targeted organisms. We hereby draw attention to the prevalence of germline recombination and provide guidelines to inform future research for the neuroscience and broader molecular genetics communities
Effects of Some Dates, Pre -treatment Sowing, Soil Texture and Foliar Spraying of Zinc on Seedling of Dalbergia sissoo (Roxb.)
Three experiments were conducted from the beginning of March to the end of October, 2012, in a field condition in Koya city-Iraqi Kurdistan region on shisham Dalbergia sissoo (Roxb.) trees. First experiment was laid out to study the effects of three date of sowing (15 of March, April and May), and six pre- treatments on seed germination of D. sissoo (Roxb.). The Results show that the best time of sowing for good seed germination was 15 of April. Highest germination rate was found when both sides of the pod were cut with soaking in tap water for 24 h. Second experiment was conducted to study the effects of three transplanting soil textures (clay, sandy and sandy clay (1:1) on seedling survival and some growth characteristics. Results indicates that D. sissoo gave better seedling survive rate, seedling leaves and height in sandy clay and sandy soils compared to clay soil. Third experiment was laid out to study the effects of foliar application of zinc (0, 57 and 114 ppm) sprayed on D. sissoo plants growing in clay, sandy and sandy clay (1:1) soils. Zinc application caused a significant increase in most vegetative growth characteristics. Treatments significantly increased leaves phosphorus, sulphate and zinc content compared to control. Most promising results were obtained from seedlings sprayed with zinc and grown in sandy clay soil
Nearest point problem in countably normed spaces
In a countably normed space which is a linear space equipped with a countable
number of pair-wise compatible norms, we prove the existence of a common
nearest point (in all norms) from a point outside a nonempty subset if this
subset is compact with respect to all norms. We also prove the uniqueness of
that common nearest point if the completion of the space equipped with only one
of its norms is uniformly convex
- …
